ORACLE

vl - Fully updated for Java SE 8 (JDK 8)
A 2SN

Java S
The Complete Reference Java
Ninth Edition

Comprehensive Coverage of the Java Language

Herbert Schildt

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio: i

ORACLE® Oracle Press™

'The

Complete
Reference

Java™
Ninth Edition

00-FM.indd 1 21/02/14 10:12 AM

(c) ketadton.com: The Digital Library

00-FM.indd 2

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio ii

About the Author

Best-selling author Herbert Schildt has written extensively about programming
for nearly three decades and is a leading authority on the Java language. His
books have sold millions of copies worldwide and have been translated into all
major foreign languages. He is the author of numerous books on Java,
including Java: A Beginner’s Guide, Herb Schildt’s Java Programming Cookbook, and
Swing: A Beginner’s Guide. He has also written extensively about C, C++, and
C#. Although interested in all facets of computing, his primary focus is
computer languages, including compilers, interpreters, and robotic control
languages. He also has an active interest in the standardization of languages.
Schildt holds both graduate and undergraduate degrees from the University
of Illinois. He can be reached at his consulting office at (217) 586-4683. His
web site is www.HerbSchildt.com.

About the Technical Editor

Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and
beyond, web services into the Java ME platform, and the strategy and planning
for Java SE 7. He founded JavaFX technology and, most recently, designed the
largest addition to the Java EE 7 standard, the Java WebSocket API. From coding
in Java to designing APIs with industry experts, to serving for several years as
an executive to the Java Community Process, he has a uniquely broad
perspective into multiple aspects of Java technology. Additionally, he is the
author of JavaWebSocket Programming and an upcoming book on Java EE.

Dr. Coward holds bachelor’s, master’s, and doctorate’s in mathematics from
the University of Oxford.

19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio iii

ORACLE® Oracle Press™

'The

Complete
Reference

Java™
Ninth Edition

00-FM.indd 3

Herbert Schildt

Mc
Graw
Hill

Education
New York Chicago San Francisco

Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

21/02/14 10:18 AM

(c) ketaJton.com: The Digital Library

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of Publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-180856-9

MHID: 0-07-180856-6

e-Book conversion by Cenveo® Publisher Services
Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-071-80855-2,
MHID: 0-07-180855-8.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use
in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation
and/or its affiliates.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw Hill”") and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based
upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

eBook_855-8 CR.indd 1 22/02/14 6:33 PM

(c) ketadton.com: The Digital Library

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents at a Glance

00-FM.indd 5

-
)
=

0 IO Ok 0N~

©

13
14
15

Part Il

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

The Java Language

The History and Evolution of Java

An Opverview of Java

Data Types, Variables, and Arrays

Operators

Control Statements

Introducing Classes

A Closer Look at Methods and Classes

Inheritance

Packages and Interfaces

Exception Handling

Multithreaded Programming

Enumerations, Autoboxing, and
Annotations (Metadata)

1/0, Applets, and Other Topics

Generics

Lambda Expressions

The Java Library

String Handling

Exploring java.lang

java.util Part 1: The Collections Framework

java.util Part 2: More Utility Classes

Input/Output: Exploring java.io

Exploring NIO

Networking

The Applet Class

Event Handling

Introducing the AWT: Working with
Windows, Graphics, and Text

Using AWT Controls, Layout Managers, and Menus

Images

The Concurrency Utilities

The Stream API

Regular Expressions and Other Packages

17
35
61
81
109
129
161
187
213
233

263
301
337
381

413
441
497
579
641
689
727
747
769

797
833
885
915
965
991

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

vi Java: The Complete Reference, Ninth Edition

Part lll

31
32
33

Part IV

34
35
36

PartV

37
38
Appendix

00-FM.indd 6

Introducing GUI Programming with Swing

Introducing Swing
Exploring Swing
Introducing Swing Menus

Introducing GUI Programming with JavaFX

Introducing JavaFX GUI Programming
Exploring JavaFX Controls
Introducing JavaFX Menus

Applying Java

Java Beans
Introducing Servlets
Using Java’s Documentation Comments

Index

1021
1041
1069

1105
1125
1171

1199
1211
1235

1243

19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents

Preface XXXI1

Part]| The Java Language

Chapter 1 The History and Evolutionof Java oot 3
Java’'sLineage 3
The Birth of Modern Programming: C 4
CH+:The NextStep oo e 5

The Stage IsSetfor Java 6

The Creationof Java i 6
The C#Connection.t 8

How Java Changed the Internet 8
JavaApplets 8
SECUTIty. ..ot 9
Portability. 9
Java’s Magic: The Bytecode 9
Servlets: Javaon the Server Side o oL 10
The JavaBuzzwords 10
Simple. . ..o 11
Object-Oriented. i 11
Robust. . .. 11
Multithreaded 12
Architecture-Neutral 12
Interpreted and High Performance......................... 12
Distributed 12
Dynamic....... 13

The Evolutionof Java. o 13
Java SE 8 . 15
A Culture of Innovation. i 16
Chapter 2 AnOverviewof Java.ttt i, 17
Object-Oriented Programming. 17
Two Paradigms. 17
ADStractiono it e 18

The Three OOP Principles. 18

vii

00-FM.indd 7 19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

vii

00-FM.indd 8

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

i Java: The Complete Reference, Ninth Edition

Chapter 3

A First Simple Program L oo il 23
Entering the Program 23
Compiling the Program 23
A Closer Look at the First Sample Program................... 24

A Second Short Program. o i 26

Two Control Statements.ttt 28
TheifStatement i 28
TheforLoop 29

Using Blocksof Code. i i 30

Lexical Issues i 32
Whitespace. 32
Identifiers. 32
Literals 32
COMMENTES . ..ottt 32
Separators. 33
The JavaKeywords. i i 33

The Java Class Libraries. o i 34

Data Types, Variables, and Arrayscoiiiiiiiiina., 35

JavaIs a Strongly Typed Language 35

The Primitive Types 35

Integers. 36
Dyte . .o 36
ShoTt . Lo 37
INU L 37
JONIG. oo 37

Floating-Point Types. i 38
float. 38
double. 38

Characters.t 39

Booleans 40

A Closer Lookat Literals. 41
Integer Literals. 41
Floating-Point Literals. 42
Boolean Literals. i 43
Character Literals 43
String Literals. 43

Variables 44
Declaring a Variable 44
Dynamic Initialization. 45
The Scope and Lifetime of Variables........................ 45

Type Conversion and Casting 48
Java’s Automatic Conversions 48
Casting Incompatible Types 48

Automatic Type Promotion in Expressions 50
The Type Promotion Rules. 50

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 9

Chapter 4

Chapter 5

Chapter 6

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents X

ATTAYS oo 51
One-Dimensional Arrays. oo, 51
Multidimensional Arrays. o i 54
Alternative Array Declaration Syntax 58

A Few Words About Strings i 58

A Note to G/C++ Programmers About Pointers 59

L0 0TS 10 61

Arithmetic Operators.ot 61
The Basic Arithmetic Operators. 62
The Modulus Operator., 63
Arithmetic Compound Assignment Operators 63
Incrementand Decrement 64

The Bitwise Operators 66
The Bitwise Logical Operators 67
The Left Shift. 69
The Right Shift. 70
The Unsigned Right Shift............ 72
Bitwise Operator Compound Assignments 73

Relational Operatorsoouuiiiuniiin ... 74

Boolean Logical Operators 75
Short-Circuit Logical Operators............................ 76

The Assignment OPerator.vuuu et et 77

The ? OPerator. . . oottt ettt e 77

Operator Precedence. i 78

Using Parentheses i 79

Control Statements. oottt enneeenneenneanns 81

Java’s Selection Statements L o oo 81
8 P 81
switch ... 84

Iteration Statements. i 89
while 89
dowhile 90
for . 93
The For-Each Version of the for Loop 97
Nested Loops 102

Jump Statements 102
Usingbreak 102
USINg CONUNUE.t ov it 106

Introducing Classesuoiitiiieiitii i ennnnennn. 109

Class Fundamentals o i 109
The General FormofaClass. 109
ASimple Class 110

Declaring Objects. 113
ACloser Lookatnew. i, 113

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

X Java: The Complete Reference, Ninth Edition

Chapter 7

Chapter 8

00-FM.indd 10

Assigning Object Reference Variables 115
Introducing Methods. o i 115
Adding a Method tothe Box Class......................... 116
ReturningaValue 118
Adding a Method That Takes Parameters 119
CONSLIUCIOTS . . . o\ttt et et et 121
Parameterized Constructors, 123
The this Keyword 124
Instance Variable Hiding. 125
Garbage Collection i i 125
The finalize() Method 126
AStack Class.t 126
A Closer Look at Methods and Classesccviuvinn., 129
Overloading Methods 129
Overloading Constructors.ouiuiiinnunnanon.. 132
Using Objects as Parameters 134
A Closer Look at Argument Passing 136
Returning Objects i 138
Recursion 139
Introducing Access Control. 141
Understanding static it 145
Introducing final 146
Arrays Revisited 147
Introducing Nested and Inner Classes 149
Exploring the String Class. 152
Using Command-Line Arguments 154
Varargs: Variable-Length Arguments 155
Overloading Vararg Methods 158
Varargs and Ambiguity Lo L 159
Inheritance.ciittiiii ittt ittt 161
Inheritance Basics i 161
Member Access and Inheritance, 163
A More Practical Example. oo oL 164
A Superclass Variable Can Reference a Subclass Object. 166
USING SUPET. « .o vttt et e et e e e e e et 167
Using super to Call Superclass Constructors. 167
ASecond Useforsuper........... 170
Creating a Multilevel Hierarchy 171
When Constructors Are Executed. 174
Method Overriding i 175
Dynamic Method Dispatch 178
Why Overridden Methods? i, 179
Applying Method Overriding 180

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 11

Chapter 9

Chapter 10

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents

Using Abstract Classes 181
Using final with Inheritance 184
Using final to Prevent Overriding 184
Using final to Prevent Inheritance 185
The Object Class.t 185
Packages and Interfaces.o i il iia, 187
Packagest 187
DefiningaPackage il 188
Finding Packages and CLASSPATH 188
A Short Package Example............ 189
Access Protection i 190
AnAccessExample o ol 191
Importing Packages 194
Interfaces 196
Defining an Interface oL 196
Implementing Interfaces. 197
Nested Interfaces. i i 200
Applying Interfaces i oo 201
Variables in Interfaces. oL 204
Interfaces Can Be Extended 206
Default Interface Methods.o i, 207
Default Method Fundamentals. 208
A More Practical Example. o oL 209
Multiple Inheritance Issues. 210
Use static Methods in an Interface 211
Final Thoughts on Packages and Interfaces 212
ExceptionHandling........... ..o, 213
Exception-Handling Fundamentals 213
Exception Types. 214
Uncaught Exceptions. 215
Using tryandcatch i 216
Displaying a Description of an Exception 218
Multiple catch Clauses. 218
Nested try Statementsttt 220
throw. ... 222
throws 223
finally. 224
Java’s Built-in Exceptions. o oo 226
Creating Your Own Exception Subclasses 227
Chained Exceptions. i 230
Three Recently Added Exception Features 231
Using EXceptions i 232

Xi

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Xii Java: The Complete Reference, Ninth Edition

Chapter 11

Chapter 12

00-FM.indd 12

Multithreaded Programmingivitiiiini i, 233
The Java Thread Model 234
Thread Priorities i 235
Synchronization. i 235
MeSSaGING . .. oottt 236
The Thread Class and the Runnable Interface............... 236
The Main Thread. i ... 237
CreatingaThread 238
Implementing Runnable., 239
Extending Thread, 241
Choosing an Approach 242
Creating Multiple Threads 242
Using isAlive() andjoin()o 243
Thread Priorities i 246
Synchronizationt 247
Using Synchronized Methods. 247
The synchronized Statement 249
Interthread Communication., 251
Deadlock. 255
Suspending, Resuming, and Stopping Threads. 257
Obtaining A Thread’s State. 259
Using Multithreading. o i i 261
Enumerations, Autoboxing, and Annotations (Metadata)........... 263
Enumerations. 263
Enumeration Fundamentals. 263
The values() and valueOf() Methods. 266
Java Enumerations Are Class Types 267
Enumerations Inherit Enum. 0 269
Another Enumeration Example................... 271
Type WIappersttt 272
CharaCterttt 273
Boolean 273
The Numeric Type Wrappers 273
AUtODOXING . . . oot 274
Autoboxing and Methods o 275
Autoboxing/Unboxing Occurs in Expressions............... 276
Autoboxing/Unboxing Boolean and Character Values 278
Autoboxing/Unboxing Helps Prevent Errors................ 278
AWordof Warning i 279
Annotations (Metadata)t 279
Annotation Basics Lo oo 280
Specifying a Retention Policy 281
Obtaining Annotations at Run Time by Use of Reflection. 281
The AnnotatedElement Interface 286
Using Default Values o o ... 287

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 13

Chapter 13

Chapter 14

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents
Marker ANNOtations.i i 288
Single-Member Annotations. 289
The Built-In Annotations 290
Type ANNOtationsttt 292
Repeating ANnotations it 297
Some Restrictions i i 299
I/0, Applets, and Other Topics.ciiiiiiiiiii i, 301
I/O BaSiCS . o v v oot e e e 301
SEreams.ot 302
Byte Streams and Character Streams 302
The Predefined Streams 304
Reading Console Input i 305
Reading Characters............. 305
Reading Strings i 306
Writing Console Output 308
The PrintWriter Class. i 308
Reading and Writing Files. 309
Automatically ClosingaFile 315
Applet Fundamentals. o o 318
The transient and volatile Modifiers. 322
Using instanceof. 322
Strictfp. ..o 324
Native Methods. 325
Problems with Native Methods 328
USING ASSEIL. . oottt 328
Assertion Enabling and Disabling Options 331
Static Import. 331
Invoking Overloaded Constructors Through this() 334
Compact API Profiles. i 336
GENETICS s« v vttt ittt ittt ettt eeneeeneeeneennnenns 337
What Are Generics? i 338
A Simple Generics Example o oo 338
Generics Work Only with Reference Types 342
Generic Types Differ Based on Their Type Arguments. 342
How Generics Improve Type Safety 342
A Generic Class with Two Type Parameters 345
The General Form of a Generic Class. 346
Bounded Types. 346
Using Wildcard Arguments 349
Bounded Wildcards. oL 352
Creating a Generic Method., 356
Generic CONStructorsttt 359
GenericInterfaces i 360
Raw Types and Legacy Code 362

Xiii

19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Xiv Java: The Complete Reference, Ninth Edition

Generic Class Hierarchies 364
Using a Generic Superclass. 365

A GenericSubclass. L 367
Run-Time Type Comparisons Within a Generic Hierarchy 368
Castingttt 370
Overriding Methods ina GenericClass..................... 371
Type Inference with Generics 372
Erasure o 373
Bridge Methods i 374
Ambiguity Errors 375
Some Generic Restrictions, 377
Type Parameters Can’t Be Instantiated 377
Restrictions on Static Members. 377
Generic Array Restrictions, 377
Generic Exception Restriction 379
Chapter 15 Lambda Expressionsottt 381
Introducing Lambda Expressions. 382
Lambda Expression Fundamentals 382
Functional Interfaces. oL 383
Some Lambda Expression Examples 384
Block Lambda Expressions 387
Generic Functional Interfaces. L 389
Passing Lambda Expressions as Arguments. 391
Lambda Expressions and Exceptions 394
Lambda Expressions and Variable Capture 395
Method References i 396
Method References to static Methods 396
Method References to Instance Methods. 397
Method References with Generics 401
Constructor References. oL 404
Predefined Functional Interfaces.................. 408

Partll The Java Library

Chapter 16 StringHandling ittt 413
The String Constructorsooiiiiitiiea.. 414
String Length 416
Special String Operations 416

String Literals. 416
String Concatenationc.uviuiinninnenn... 417
String Concatenation with Other Data Types 417
String Conversion and toString() 418
Character Extraction i i 419
CharAt(). .. 419
getChars() ... 419

00-FM.indd 14 19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 15

Chapter 17

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents

getBytes() ... 420
toCharArray()ot 420
String Comparison. i 420
equals() and equalslgnoreCase()......................... 421
regionMatches() i 421
startsWith() and endsWith(). 422
equals() Versus ==.......... i 422
compareTo(). 423
Searching Strings i 424
Modifyinga String 426
SUbStING(). . oo 426
CONCAL() et e et e e e e e 427
Teplace() ..ottt 427
185100 X (R 1S P 428
Data Conversion Using valueOf() 428
Changing the Case of Characters Withina String................. 429
Joining Strings 430
Additional String Methods oo 431
StringBuffer 432
StringBuffer Constructors. 432
length() and capacity(). o i 433
ensureCapacity() 433
setbength() ... o i 433
charAt() andsetCharAt()cciiiiiinn .. 434
getChars(). ... 434
append() . ..o 435
INSETE(). ettt et e 435
TEVETSE() v oot e e e e 436
delete() and deleteCharAt(). 436
PEPlace() ..ottt 437
SUDSEING (). o oottt 437
Additional StringBuffer Methods. 438
StringBuilder 439
Exploringjavaldang.ottt ittt 441
Primitive Type Wrappers o 442
Number 442
Doubleand Float. i 442
Understanding isInfinite() and isNaN() 446
Byte, Short, Integer,and Long 447
Character 455
Additions to Character for Unicode Code Point Support 458
Boolean 458
Void . .o 460
Process 460

XV

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XVi Java: The Complete Reference, Ninth Edition

00-FM.indd 16

Runtime 461
Memory Management.t ... 462
Executing Other Programs. 464

ProcessBuilder 465

SYSEEIN . . oot 467
Using currentTimeMillis() to Time Program Execution. 469
USIng arrayCopy(). .o vvv vt 469
Environment Properties 470

ODbJECt . oot 471

Using clone() and the Cloneable Interface 471

ClaSS. .« o et 473

ClassLoader i 477

Math ... 477
Trigonometric Functions. 477
Exponential Functions o 478
Rounding Functions 478
Miscellaneous Math Methods 479

StrictMath.o 481

Compiler. 481

Thread, ThreadGroup, and Runnable 481
The Runnable Interface 481
Thread 482
ThreadGroup. i 484

ThreadLocal and InheritableThreadLocal 488

Package. 489

RuntimePermission i 490

Throwable. 490

SecurityManager. 490

StackTraceElement. i i 491

Enum...... 492

ClassValue. 493

The CharSequence Interface 493

The Comparable Interface 493

The Appendable Interface 494

The Iterable Interface 494

The Readable Interface............, 495

The AutoCloseable Interface 495

The Thread.UncaughtExceptionHandler Interface 495

The javalang Subpackageso 495

javalang.annotation i 496
javalang.instrument o oo 496
javalang.invoke oo 496
javalang.management. i 496
javalangref oo oo 496
javalangreflect L i 496

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

Contents

Chapter 18 java.util Part 1: The Collections Framework 497
Collections OVEIVIEWot i 498
JDK 5 Changed the Collections Framework. 500
Generics Fundamentally Changed the Collections Framework . . 500
Autoboxing Facilitates the Use of Primitive Types 500

The For-Each Style for Loop............. 500

The Collection Interfaces 501
The Collection Interface. 501

The List Interface 504

The SetInterface............. i 504

The SortedSet Interface 506

The NavigableSet Interface. 507

The Queue Interface.o il 508

The Deque Interface............ 509

The Collection Classes., 510
The ArrayList Class 511

The LinkedList Class. 515

The HashSet Class 516

The LinkedHashSet Class oo, 517

The TreeSet Class. i 518

The PriorityQueue Class., 519

The ArrayDeque Class. 520

The EnumSetClass 521
Accessing a Collection via an Iterator. 521
UsinganIterator i 523

The For-Each Alternative to Iterators. 525
Spliteratorso 526
Storing User-Defined Classes in Collections. 529
The RandomAccess Interface 530
Workingwith Maps. i 530
The Map Interfaces 531

The Map Classes.ooott i 537
ComPAaratorS.o 542
Using a Comparatoroouiiiininiinnnnen... 544

The Collection Algorithms, 550
ATTays .o 556
The Legacy Classes and Interfaces 561
The Enumeration Interface 562
VeCtOr . .o 562
Stack . ..o 566
Dictionary. 568
Hashtable 569
Properties.ttt 572
Using store() andload(). 576
Parting Thoughts on Collections 577

00-FM.indd 17

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xvii

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xviii Java: The Complete Reference, Ninth Edition

Chapter 19 java.util Part 2: More Utility Classescoouiiia... 579
StringTokenizer 579
BitSet. . ..o 581
Optional, OptionalDouble, Optionallnt, and OptionalLong. 584
Date. 586
Calendar...... 588
GregorianCalendar i L 591
TimeZone 593
SimpleTimeZone i 594
Locale 594
Random 596
Observable 598

The Observer Interface.............. 599
An Observer Example oo oo 599
Timer and TimerTask 602
CUITENCY . . oo e 604
Formatter 605
The Formatter Constructors. 605
The Formatter Methods 606
Formatting Basics. i 607
Formatting Strings and Characters. 609
Formatting Numbers.......... o ... 609
Formatting Timeand Date 610
The %n and %% Specifiers 612
Specifying a Minimum Field Width 612
Specifying Precision. o oo 614
Using the FormatFlags 614
Justifying Output oo 615
The Space, +,0,and (Flags 616
The CommaFlag........ 617
The#Flag. 617
The Uppercase Optiont 617
Using an ArgumentIndex., 618
Closinga Formatter., 619
The Java printf() Connection 620
SCaANNEr. 620
The Scanner Constructorsouviunien..... 620
Scanning Basics o oo 620
Some Scanner Examples. o oo 624
Setting Delimiters i 628
Other Scanner Features 629

The ResourceBundle, ListResourceBundle,
and PropertyResourceBundle Classes. 630
Miscellaneous Utility Classes and Interfaces 635

00-FM.indd 18

19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents
The java.util Subpackages o i 635
java.util.concurrent, java.util.concurrent.atomic,
and java.util.concurrentdocks. oo oo 636
javaautilfunction oo oo oo 636
Javautiljar ... oo 639
javaatillogging o 639
Javaautilprefso oo 639
Javaautilregex. o 639
Javautilspi ... 639
Javaautilstream. o o oo 639
Javautilzip ... oo 639
Chapter 20 Input/Output: Exploring javaio 0oL, 641
The I/0O Classes and Interfaces. 641
File. ..o 642
Directories 645
Using FilenameFilter. o oL 646
The listFiles() Alternative.c.ovuriren ... 647
Creating Directories 648
The AutoCloseable, Closeable, and Flushable Interfaces........... 648
I/O EXCeptions.ot 649
Two Ways to Close a Stream., 649
The Stream Classes. 650
The Byte Streams 651
InputStream. 651
OutputStream it 651
FileInputStream. i 652
FileOutputStream i .. 654
ByteArraylnputStream. oo oL 656
ByteArrayOutputStream 658
Filtered Byte Streams. 659
Buffered Byte Streams. 659
SequencelnputStream. oo oL 663
PrintStream 665
DataOutputStream and DatalnputStream. 667
RandomAccessFile. i i 669
The Character SIreamsttt 670
Reader 670
WIIter . ..o 670
FileReader i i 672
FileWriter 673
CharArrayReader. o i 674
CharArrayWriter i 675
BufferedReader i 676
BufferedWriter. 678

00-FM.indd 19

XiXx

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XX Java: The Complete Reference, Ninth Edition

Chapter 21

Chapter 22

00-FM.indd 20

PushbackReader i 678
PrintWIitert 679
The Console ClIass e 680
Serialization 682
Serializable 682
Externalizable 683
ObjectOutput. 683
ObjectOutputStream. 684
ObjectInput o 685
ObjectlnputStream i 685
A Serialization Example o oo 686
Stream Benefits 688
Exploring NIO oo i i i i it ittt e 689
The NIO Classes. . . oottt e e 689
NIO Fundamentals. 690
Buffers 690
Channels. 691
Charsets and Selectors. 693
Enhancements Added to NIO by JDK7......................... 694
The Path Interface. 694
The Files Class e 695
The Paths Class 698
The File Attribute Interfaces. 698
The FileSystem, FileSystems, and FileStore Classes. 700
Using the NIO Systemttt 700
Use NIO for Channel-Based I/O 700
Use NIO for Stream-Based I/O 709
Use NIO for Path and File System Operations 712
Pre-J]DK 7 Channel-Based Examples............................ 719
Read a File, PreJDK 7. 720
Write to a File, Pre-JDK 7.o i 723
Networking. . .. oottt it ittt ittt it ii i 727
Networking Basicsottt 727
The Networking Classes and Interfaces 728
INEtAddress.ot 729
Factory Methods 729
Instance Methods.ttt 730
Inet4Address and InetbAddress 731
TCP/IP Client SOCKELS. . . v v oot 731
URL . .. 735
URLCONNECHON . « . o\ et ettt et et e e e et et 736
HttpURLCONNECHOM . .+ ¢ et vttt et et e e e e e 739
The URLCIass.ottt e ettt e e e e e e 741
COOKIES . . vt ettt 741

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 21

Chapter 23

Chapter 24

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents
TCP/IP Server SOCKets. . . . v v vttt e e 741
Datagrams. oottt e 742
DatagramSocket. 742
DatagramPacket. 743
ADatagram Example. o i 744
The Applet Class oottt ii ittt iiiiiiiieenannns 747
Two Types of Applets 747
Applet Basics. .« ..o vt 747
The Applet Classoo it 749
Applet Architecture i 751
An Applet SKeletont 751
Applet Initialization and Termination 753
Overriding update(). i 754
Simple Applet Display Methods 754
Requesting Repainting.oooiuniiineinnenn.. 756
A Simple Banner Applet i 757
Using the Status Window. 759
The HTMLAPPLET Tag. i 760
Passing Parameters to Applets. i 761
Improving the Banner Applet. 763
getDocumentBase() and getCodeBase() 764
AppletContext and showDocument() 765
The AudioClip Interface 767
The AppletStub Interface 767
Outputting to the Console i, 767
EventHandling.ot tiiiiiiiiiiiiiiiiiiinnennnnn, 769
Two Event Handling Mechanisms. 769
The Delegation Event Model oo, .. 770
EVENUS . .ottt 770
EVent SOUICes.ttt 770
Event LiSteners.ttt 771
Event Classes.ottt e e e 771
The ActionEvent Class.t ... 773
The AdjustmentEvent Classoiiiinnen.... 773
The ComponentEventClass 774
The ContainerEvent Class. 774
The FocusEvent Class, 775
The InputEvent Classoouiiiin ... 775
The ItemEvent Classooviiiiiinenn... 776
The KeyEvent Classttt i 777
The MouseEvent Class.ooiiiiiiiniei ... 778
The MouseWheelEvent Class 779
The TextEvent Class. 780
The WindowEvent Class 780

xXi

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XXii Java: The Complete Reference, Ninth Edition

Chapter 25

00-FM.indd 22

Sources of Events .

Event Listener Interfaces.,
The ActionListener Interface
The AdjustmentListener Interface.........................
The ComponentListener Interface
The ContainerListener Interface
The FocusListener Interface.
The ItemListener Interface.

The KeyListen

erInterface

The MouseListener Interface
The MouseMotionListener Interface.
The MouseWheelListener Interface.
The TextListener Interface.
The WindowFocusListener Interface.
The WindowListener Interface.
Using the Delegation EventModel.
Handling Mouse Events
Handling Keyboard Events

Adapter Classes. . .
Inner Classes.

Anonymous Inner Classes.

Introducing the AWT: Working with Windows, Graphics, and Text . ..

AWT Classes

Window Fundamentals

Component .
Container. . .

Canvas.

Working with Frame Windows.
Setting the Window’s Dimensions
Hiding and Showing a Window
Settinga Window’s Title
Closing a Frame Window.

Creating a Frame Window in an AWT-Based Applet
Handling Events in a Frame Window.

Creating a Windowed Program.

Displaying Information Within a Window

Introducing Graphics. o i

Drawing Lines

Drawing Rectangles.
Drawing Ellipses and Circles.

Drawing Arcs

781
782
783
783
783
783
783
783
784
784
784
784
784
785
785
785
785
788
791
793
795

797
798
800
800
801
801
801
801
801
802
802
802
802
803
803
805
809
811
811
811
812
812
812

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 23

Chapter 26

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents xxiii

Drawing Polygons oo 813
Demonstrating the Drawing Methods 813
Sizing Graphics i 814
Working with Color o i 815
ColorMethods. 816
Setting the Current Graphics Color........................ 817
A Color Demonstration Applet. 817

Setting the Paint Mo

de .o 818

Workingwith Fonts o i i 819
Determining the Available Fonts 821
Creating and SelectingaFont. 822
Obtaining Font Information. 824

Managing Text Output Using FontMetrics. 825
Displaying Multiple Lines of Text.......................... 825
Centering Text. i 828
Multiline Text Alignment 829

Using AWT Controls, Layout Managers, and Menus. 833

AWT Control Fundamentals, 834
Adding and Removing Controls. 834
Responding to Controls 834
The HeadlessException. 835

Labelso 835

UsingButtons. 836
Handling Buttons 836

Applying Check Boxes. il 840
Handling Check Boxes 840

CheckboxGroup. ... 342

Choice Controls i 844
Handling Choice Lists. i, 844

Using Lists.o 846
Handling Listsot e 847

Managing Scroll Bars. 849
Handling Scroll Bars 850

UsingaTextField i 852
Handling a TextField. 853

UsingaTextArea i 854

Understanding Layout Managers 855
FlowLayout......... i 856
BorderLayout.......... 858
UsingInsets i 860
GridLayout. 861
CardLayout. i 362
GridBagLayout. 865

MenuBarsand Menus.t 870

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XXiVv Java: The Complete Reference, Ninth Edition

Chapter 27

Chapter 28

00-FM.indd 24

Dialog BOXES. . ..ottt 876
FileDialog 880
A Word About Overriding paint() oo, 882
Imagesoitiiii i it i i i i it i e 885
File Formats 885
Image Fundamentals: Creating, Loading, and Displaying 886
Creating an Image Object. 886
LoadinganImage 886
Displayingan Image 887
ImageObserver. 888
Double Buffering 889
MediaTracker....... 892
ImageProducer. 895
MemorylmageSource i 895
ImMageCONSUMET. . o ..ottt ettt e ettt e 897
PixelGrabber 897
ImageFilter. 899
CropImageFilter 900
RGBImageFilter. i i 902
Additional Imaging Classes 913
The Concurrency Utilitieso, 915
The Concurrent API Packages 916
java.util.concurrent Lo 916
java.util.concurrent.atomic. oL 917
java.util.concurrent.docks Lo ool 917
Using Synchronization Objects. 917
Semaphore....... 918
CountDownLatch. 923
CyclicBarrier. 925
Exchanger 927
Phaser 930
Using an EXecutorot 937
A Simple Executor Example......... 937
Using Callable and Future 939
The TimeUnit Enumeration.................................. 942
The Concurrent Collections 943
Locks. ..o 943
Atomic OPerations.ouiuiuiniii i 946
Parallel Programming via the Fork/Join Framework 947
The Main Fork/Join Classes 948
The Divide-and-Conquer Strategy 951
A Simple First Fork/Join Example 952
Understanding the Impact of the Level of Parallelism 955
An Example that Uses RecursiveTask<V>. 958

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 25

Chapter 29

Chapter 30

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents
Executing a Task Asynchronously. 960
CancellingaTask.o i i 961
Determining a Task’s Completion Status. 961
RestartingaTask il 961
Things to Explore 962
Some Fork/Join Tips.......... i i 963
The Concurrency Utilities Versus Java’s Traditional Approach 964
TheStream APIttt 965
Stream Basics 965
Stream Interfaces. o il 966
HowtoObtainaStream 969
A Simple Stream Example.o oo 969
Reduction Operationst 973
Using Parallel Streams.t 975
Mappingot 978
Collecting o 982
Iterators and Streams. i 986
Use an Iterator witha Stream 986
Use SPHLErator.ottt 987
More to Explore in the Stream API 990
Regular Expressions and Other Packages....................... 991
The Core Java API Packages 991
Regular Expression Processing 993
Pattern 994
Matcher 994
Regular Expression Syntax 995
Demonstrating Pattern Matching. 995
Two Pattern-Matching Options. 1001
Exploring Regular Expressions. 1001
Reflection 1001
Remote Method Invocation (RMI)............................ 1005
A Simple Client/Server Application Using RMI............. 1006
Formatting Date and Time with java.text....................... 1009
DateFormat Class., 1009
SimpleDateFormat Class 1011
The Time and Date APIAdded by JDKS8....................... 1013
Time and Date Fundamentals. 1013
Formatting Date and Time 1015
Parsing Date and Time Strings 1017
Other Things to Explore in java.time...................... 1018

XXV

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xXXvi Java: The Complete Reference, Ninth Edition

Part Ill

Introducing GUI Programming with Swing

Chapter 31

Chapter 32

Chapter 33

00-FM.indd 26

Introducing Swing ittt i 1021
The Originsof Swing o i 1021
Swing Is Builton the AWT 1022
Two Key Swing Features. 1022
Swing Components Are Lightweight 1022
Swing Supports a Pluggable Look and Feel................. 1022
The MVC Connection, 1023
Components and Containers oiin.... 1024
COMPONENLS. . oottt 1024
CONEANETS . ..ottt 1025
The Top-Level Container Panes 1025
The Swing Packages. 1026
A Simple Swing Application oL 1026
EventHandling i 1030
Createa Swing Applet 1033
PaintinginSwing L Lo il 1036
Painting Fundamentals L 1036
Compute the Paintable Area. 1037
APaintExample 1037
Exploring Swing.ttt ittt 1041
JLabel and Imagelcon L 1041
JTextField 1043
The Swing Buttons. i i 1045
JButton 1045
JToggleButtonot 1047
Check Boxes. i 1049
Radio Buttons. 1051
JTabbedPane. 1053
JScrollPane 1056
JLast . o 1058
JComboBox. 1061
Trees ... 1063
JTable 1066
Introducing Swing Menus.ttt i e 1069
MenuBasics 1069
An Overview of JMenuBar, JMenu, and JMenultem 1071
JMenuBar.o 1071
JMENU . .o 1072
JMenultemot 1073
Create aMain Menu i, 1074
Add Mnemonics and Accelerators to Menu Items. 1078
Add Images and Tooltips to Menu Items 1080
Use JRadioButtonMenultem and JCheckBoxMenultem 1081
CreateaPopupMenu i il 1083

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

00-FM.indd 27

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents
CreateaToolbar. i 1087
USE ACHONS . . oottt 1089
Put the Entire MenuDemo Program Together 1095
Continuing Your Exploration of Swing. 1101
PartIV Introducing GUI Programming with JavaFX

Chapter 34 Introducing JavaFX GUI Programming............., 1105
JavaFX Basic Concepts. i 1106
The JavaFX Packages................ 1106

The Stage and Scene Classes. 1106
Nodes and Scene Graphs 1107
Layouts . ..o oot 1107

The Application Class and the Lifecycle Methods. 1107
Launching a JavaFX Application 1108

A JavaFX Application Skeleton 1108
Compiling and Running a JavaFX Program..................... 1111
The Application Thread 1112
A Simple JavaFX Control: Label 1112
Using Buttonsand Events 1114
EventBasics 1115
Introducing the Button Control. 1115
Demonstrating Event Handling and the Button............. 1116
Drawing DirectlyonaCanvas 1119
Chapter 35 Exploring JavaFX Controls.ttt 1125
Using Image and ImageView. 1125
Adding an Image toalabel 1128
Using an Image withaButton 1130
ToggleButton 1133
RadioButton 1135
Handling Change Events in a Toggle Group................ 1138

An Alternative Way to Handle Radio Buttons 1139
CheckBox 1142
ListView. 1146
ListView Scrollbars. 1149
Enabling Multiple Selections 1150
ComboBox 1151
TextField........ 1154
ScrollPane. 1157
TreeView. 1160
Introducing Effects and Transforms. 1164
Effects. 1165
Transforms 1166
Demonstrating Effects and Transforms 1167
Adding TOOIHPS « .. v v vttt e e 1170
Disabling a Controloiiui i 1170

XXVii

19/02/14 11:45 AM

(c) ketadton.com: The Digital Library

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XXViii Java: The Complete Reference, Ninth Edition

Chapter 36

PartV
Chapter 37

Chapter 38

00-FM.indd 28

Introducing JavaFX Menus. oo titiiiii it i 1171
Menu Basicsot 1171
An Overview of MenuBar, Menu, and Menultem 1173

MenuBar. 1173

MENU. .« oottt 1174

Menultem. 1174
Create aMain Menu i 1175
Add Mnemonics and Accelerators to Menu Items. 1180
Add ImagestoMenultems 1182
Use RadioMenultem and CheckMenultem..................... 1183
Createa Context Menu 1185
CreateaToolbar. i 1189
Put the Entire MenuDemo Program Together 1191
Continuing Your Exploration of JavaFX. 1196

Applying Java

JavaBeans i i i i e 1199
WhatlIsaJavaBean?. L 1199
Advantagesof JavaBeans. o o oL 1200
Introspection 1200
Design Patterns for Properties 1200
Design Patternsfor Events 1202
Methods and Design Patterns. 1202
Using the Beanlnfo Interface............................ 1202
Bound and Constrained Properties 1203
Persistence 1203
CUStOMIZETSt 1203
The JavaBeans API i i 1204
Introspector 1206
PropertyDescriptor i 1206
EventSetDescriptor i 1206
MethodDescriptor 1206
ABeanExample.......... i 1206
Introducing Servlets. i i i i 1211
Background 1211
The Life Cycle ofaServlet. 1212
Servlet Development Options. 1212
Using Tomcat.......... i 1213
ASimple Servlet....... 1214
Create and Compile the Servlet Source Code............... 1215
Start Tomcat. 1215
Start a Web Browser and Request the Servlet 1216

19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents XXiX

The Servlet APL 1216
The javax.servlet Package 1216
The Servlet Interface., 1217

The ServletConfig Interface 1218

The ServletContext Interface 1218

The ServletRequest Interface 1218

The ServletResponse Interface. 1218

The GenericServlet Class. 1220

The ServletlnputStream Class. 1220

The ServletOutputStream Class 1220

The Servlet Exception Classes. 1220
Reading Servlet Parameters. oL 1220
The javax.servlethttp Package 1222
The HttpServletRequest Interface 1222

The HttpServletResponse Interface....................... 1222

The HttpSession Interface 1223

The Cookie Class., 1224

The HttpServlet Classo i, 1225
Handling HTTP Requests and Responses 1227
Handling HTTP GET Requestso..... 1227
Handling HTTP POST Requestso..... 1229
Using CooKies.t 1230
Session Tracking. i i i 1232
Appendix Using Java’s Documentation Commentscooovvuaen. 1235
Thejavadoc Tags i 1235
@author 1236
{@code}. e 1236
@deprecated 1236
{@AOCROOL}. . .o 1237
@EXCEPUOTL. . . ottt ettt e et 1237
{(@InheritDoc).o 1237
{@InkK). 1237
{@linkplain} 1237
(@literal} 1237
@PATAIN . .ottt 1237
@returnt 1238
@SCC . ..o 1238
@serial 1238
@serialData. 1238
@serialField 1238
@SINCE. . ..ot 1238

00-FM.indd 29 19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XXX Java: The Complete Reference, Ninth Edition

@ENTOWS . e 1239
{@value} e 1239
@VETSION . . ettt et e et e 1239
The General Form of a Documentation Comment. 1239
Whatjavadoc Outputs 1239
An Example that Uses Documentation Comments............... 1240
INdeX o viiit ittt ettt eeeeeeeeeaeaeaeaanenanannnnnns 1243

00-FM.indd 30 19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Preface

ava is one of the world’s most important and widely used computer languages.

Furthermore, it has held that distinction for many years. Unlike some other computer

languages whose influence has waned with the passage of time, Java’s has grown stronger.

Java leapt to the forefront of Internet programming with its first release. Each subsequent
version has solidified that position. Today, it is still the first and best choice for developing
web-based applications. Simply put: much of the modern world runs on Java code. Java
really is that important.

A key reason for Java’s success is its agility. Since its original 1.0 release, Java has
continually adapted to changes in the programming environment and to changes in the
way that programmers program. Most importantly, it has not just followed the trends, it has
helped create them. Java’s ability to accommodate the fast rate of change in the computing
world is a crucial part of why it has been and continues to be so successful.

Since this book was first published in 1996, it has gone through several editions, each
reflecting the ongoing evolution of Java. This is the Ninth edition, and it has been updated
for Java SE 8 (JDK 8). As a result, this edition of the book contains a substantial amount of
new material because Java SE 8 adds several new features to the Java language. The most
important is the lambda expression, which introduces an entirely new syntax element and
fundamentally increases the expressive power of the language. Because the impact of
lambda expressions is so significant, an entire chapter is devoted to them. Furthermore,
examples of their use are found elsewhere in the book. The lambda expression was also the
catalyst for other new features. One is the stream library in java.util.stream, which supports
pipeline operations on data. It too has an entire chapter devoted to it. Another is the
default method, which makes it possible to add default functionality to an interface.
Features such as repeating and type annotations further expand the power of Java. Java
SE 8 also makes significant enhancements to the Java API library, several of which are
described in this book.

Another important addition to this edition of the book is coverage of JavaFX, Java’s new
GUI framework. Because of the significant role that JavaFX is expected to play in the way
Java applications are designed, three new chapters are devoted to it. Simply put, experience
with JavaFX is something that Java programmers need. An additional chapter about Swing
has also been included that discusses menus. Although Swing may ultimately be replaced by
JavaFX, itis (at the time of this writing) still the most widely used Java GUI framework.
Thus, expanded coverage was warranted. Finally, many small updates have been made
throughout the book.

XXXi

00-FM.indd 31 19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxxii Java: The Complete Reference, Ninth Edition

A Book for All Programmers

This book is for all programmers, whether you are a novice or an experienced pro. The
beginner will find its carefully paced discussions and many examples especially helpful. Its
in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For
both, it offers a lasting resource and handy reference.

What'’s Inside

This book is a comprehensive guide to the Java language, describing its syntax, keywords,
and fundamental programming principles. Significant portions of the Java API library are
also examined. The book is divided into five parts, each focusing on a different aspect of
the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the basics,
including such things as data types, operators, control statements, and classes. It then
moves on to inheritance, packages, interfaces, exception handling, and multithreading.
Next, it describes annotations, enumerations, autoboxing, and generics. I/O and applets
are also introduced. The final chapter in Part I covers lambda expressions. As mentioned,
the lambda expression is the single most important new feature in Java SE 8.

Part IT examines key aspects of Java’s standard API library. Topics include strings, 1/0O,
networking, the standard utilities, the Collections Framework, applets, the AWT, event
handling, imaging, concurrency (including the Fork/Join Framework), regular
expressions, and the new stream library.

Part IIT offers three chapters that introduce Swing.

Part IV presents three chapters that introduce JavaFX.

Part V contains two chapters that show examples of Java in action. The first discusses
Java Beans. The second presents an introduction to servlets.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples in this book is available free-of-charge
on the Web at www.oraclepressbooks.com.

Special Thanks

I want to give special thanks to Patrick Naughton, Joe O’Neil, and Danny Coward.

Patrick Naughton was one of the creators of the Java language. He also helped write the
first edition of this book. For example, among many other contributions, much of the material
in Chapters 20, 22, and 27 was initially provided by Patrick. His insights, expertise, and
energy contributed greatly to the success of that book.

During the preparation of the second and third editions of this book, Joe O’Neil
provided initial drafts for the material now found in Chapters 30, 32, 37, and 38 of this
edition. Joe helped on several of my books and his input has always been top-notch.

00-FM.indd 32 19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Preface xxXiii

Danny Coward is the technical editor for this edition of the book. Danny has worked on
several of my books and his advice, insights, and suggestions have always been of great value
and much appreciated.

HERBERT SCHILDT

00-FM.indd 33 19/02/14 11:45 AM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

XXXiv Java: The Complete Reference, Ninth Edition

For Further Study

Java: The Complete Reference is your gateway to the Herb Schildt series of Java programming
books. Here are others that you will find of interest:

Herb Schildt’s Java Programming Cookbook
Java: A Beginner’s Guide
Swing: A Beginner’s Guide

The Art of Java

00-FM.indd 34 19/02/14 11:45 AM

(c) ketaJton.com: The Digital Library

01-ch01.indd 1

PART

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio: 1

The Java Language

CHAPTER 1
The History and Evolution
of Java

CHAPTER 2

An Overview of Java

CHAPTER 3
Data Types, Variables,
and Arrays

CHAPTER 4

Operators

CHAPTER 5

Control Statements

CHAPTER 6

Introducing Classes

CHAPTER 7
A Closer Look at Methods
and Classes

CHAPTER 8

Inheritance

CHAPTER 9

Packages and Interfaces

CHAPTER 10
Exception Handling

CHAPTER 11

Multithreaded Programming

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

01-ch01.indd 2 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

CHAPTER

The History and
Evolution of Java

To fully understand Java, one must understand the reasons behind its creation, the forces
that shaped it, and the legacy that it inherits. Like the successful computer languages that
came before, Java is a blend of the best elements of its rich heritage combined with the
innovative concepts required by its unique mission. While the remaining chapters of

this book describe the practical aspects of Java—including its syntax, key libraries, and
applications—this chapter explains how and why Java came about, what makes it so
important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming
language. Computer language innovation and development occurs for two fundamental
reasons:

¢ To adapt to changing environments and uses

¢ To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal
measure.

Java’s Lineage

Java is related to C++, which is a direct descendant of C. Much of the character of Java is
inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-
oriented features were influenced by C++. In fact, several of Java’s defining characteristics
come from—or are responses to—its predecessors. Moreover, the creation of Java was
deeply rooted in the process of refinement and adaptation that has been occurring in
computer programming languages for the past several decades. For these reasons, this
section reviews the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental problem
that the preceding languages could not solve. Java is no exception.

01-ch01.indd 3 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

L PARTI The Java Language

The Birth of Modern Programming: C

The Clanguage shook the computer world. Its impact should not be underestimated, because
it fundamentally changed the way programming was approached and thought about. The
creation of C was a direct result of the need for a structured, efficient, high-level language
that could replace assembly code when creating systems programs. As you probably know,
when a computer language is designed, trade-offs are often made, such as the following:

® FKase-of-use versus power
e Safety versus efficiency

¢ Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one
set of traits or the other. For example, although FORTRAN could be used to write fairly
efficient programs for scientific applications, it was not very good for system code. And
while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its
usefulness questionable for large programs. Assembly language can be used to produce
highly efficient programs, but it is not easy to learn or use effectively. Further, debugging
assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to understand.
While languages like Pascal are structured, they were not designed for efficiency, and failed
to include certain features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was not practical
to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By
the early 1970s, the computer revolution was beginning to take hold, and the demand for
software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was
being expended in academic circles in an attempt to create a better computer language.

But, and perhaps most importantly, a secondary force was beginning to be felt. Computer
hardware was finally becoming common enough that a critical mass was being reached. No
longer were computers kept behind locked doors. For the first time, programmers were
gaining virtually unlimited access to their machines. This allowed the freedom to experiment.
It also allowed programmers to begin to create their own tools. On the eve of C’s creation,
the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX
operating system, C was the result of a development process that started with an older
language called BCPL, developed by Martin Richards. BCPL influenced a language called
B, invented by Ken Thompson, which led to the development of C in the 1970s. For many
years, the de facto standard for C was the one supplied with the UNIX operating system and
described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-
Hall, 1978). C was formally standardized in December 1989, when the American National
Standards Institute (ANSI) standard for C was adopted.

01-ch01.indd 4 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 1 The History and Evolution of Java 5

The creation of C is considered by many to have marked the beginning of the modern
age of computer languages. It successfully synthesized the conflicting attributes that had so
troubled earlier languages. The result was a powerful, efficient, structured language that
was relatively easy to learn. It also included one other, nearly intangible aspect: it was a
programmer’s language. Prior to the invention of C, computer languages were generally
designed either as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers, reflecting the way
that they approached the job of programming. Its features were honed, tested, thought
about, and rethought by the people who actually used the language. The result was a
language that programmers liked to use. Indeed, C quickly attracted many followers
who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the
programmer community. In short, C is a language designed by and for programmers.

As you will see, Java inherited this legacy.

C++: The Next Step

During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed. The answer is complexity. Throughout the
history of programming, the increasing complexity of programs has driven the need for
better ways to manage that complexity. C++ is a response to that need. To better understand
why managing program complexity is fundamental to the creation of C++, consider the
following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done by
manually toggling in the binary machine instructions by use of the front panel. As long as
programs were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger, increasingly
complex programs by using symbolic representations of the machine instructions. As
programs continued to grow, high-level languages were introduced that gave the programmer
more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an
impressive first step, it is hardly a language that encourages clear and easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of programming
championed by languages such as C. The use of structured languages enabled programmers
to write, for the first time, moderately complex programs fairly easily. However, even with
structured programming methods, once a project reaches a certain size, its complexity
exceeds what a programmer can manage. By the early 1980s, many projects were pushing
the structured approach past its limits. To solve this problem, a new way to program was
invented, called object-oriented programming (OOP). Object-oriented programming is discussed
in detail later in this book, but here is a brief definition: OOP is a programming methodology
that helps organize complex programs through the use of inheritance, encapsulation, and
polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once the size of a program exceeds a
certain point, it becomes so complex that it is difficult to grasp as a totality. While the
precise size at which this occurs differs, depending upon both the nature of the program
and the programmer, there is always a threshold at which a program becomes unmanageable.

01-ch01.indd 5 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

6 PARTI The Java Language

C++ added features that enabled this threshold to be broken, allowing programmers to
comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories
in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”
However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented
features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,
and benefits. This is a crucial reason for the success of C++ as a language. The invention of
C++ was not an attempt to create a completely new programming language. Instead, it was
an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took
hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect
language. Because C++ blended the high efficiency and stylistic elements of C with the
object-oriented paradigm, it was a language that could be used to create a wide range of
programs. However, just as in the past, forces were brewing that would, once again, drive
computer language evolution forward. Within a few years, the World Wide Web and the
Internet would reach critical mass. This event would precipitate another revolution in
programming.

The Creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working
version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between
the initial implementation of Oak in the fall of 1992 and the public announcement of Java
in the spring of 1995, many more people contributed to the design and evolution of the
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were
key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the
primary motivation was the need for a platform-independent (that is, architecture-neutral)
language that could be used to create software to be embedded in various consumer
electronic devices, such as microwave ovens and remote controls. As you can probably
guess, many different types of CPUs are used as controllers. The trouble with C and C++
(and most other languages) is that they are designed to be compiled for a specific target.
Although it is possible to compile a C++ program for just about any type of CPU, to do so
requires a full C++ compiler targeted for that CPU. The problem is that compilers are
expensive and time-consuming to create. An easier—and more cost-efficient—solution
was needed. In an attempt to find such a solution, Gosling and others began work on a
portable, platform-independent language that could be used to produce code that would
run on a variety of CPUs under differing environments. This effort ultimately led to the
creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor was emerging that would play a crucial role in the future of Java.
This second force was, of course, the World Wide Web. Had the Web not taken shape at
about the same time that Java was being implemented, Java might have remained a useful
but obscure language for programming consumer electronics. However, with the emergence

01-ch01.indd 6 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

01-ch01.indd 7

Chapter 1 The History and Evolution of Java 7

of the World Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat
to other, more pressing problems. Further, because (at that time) much of the computer
world had divided itself into the three competing camps of Intel, Macintosh, and UNIX,
most programmers stayed within their fortified boundaries, and the urgent need for
portable code was reduced. However, with the advent of the Internet and the Web, the
old problem of portability returned with a vengeance. After all, the Internet consists of a
diverse, distributed universe populated with various types of computers, operating systems,
and CPUs. Even though many kinds of platforms are attached to the Internet, users would
like them all to be able to run the same program. What was once an irritating but low-
priority problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also
found when attempting to create code for the Internet. In fact, the same problem that Java
was initially designed to solve on a small scale could also be applied to the Internet on a
large scale. This realization caused the focus of Java to switch from consumer electronics
to Internet programming. So, while the desire for an architecture-neutral programming
language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent.
The Java designers knew that using the familiar syntax of C and echoing the object-oriented
features of C++ would make their language appealing to the legions of experienced C/C++
programmers. In addition to the surface similarities, Java shares some of the other attributes
that helped make C and C++ successful. First, Java was designed, tested, and refined by real,
working programmers. It is a language grounded in the needs and experiences of the
people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and
logically consistent. Third, except for those constraints imposed by the Internet environment,
Java gives you, the programmer, full control. If you program well, your programs reflect it.
If you program poorly, your programs reflect that, too. Put differently, Java is not a language
with training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java has
significant practical and philosophical differences. While it is true that Java was influenced
by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor
downwardly compatible with C++. Of course, the similarities with C++ are significant, and if
you are a C++ programmer, then you will feel right at home with Java. One other point: Java
was not designed to replace C++. Java was designed to solve a certain set of problems. C++
was designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:
to adapt to changes in environment and to implement advances in the art of programming.
The environmental change that prompted Java was the need for platform-independent
programs destined for distribution on the Internet. However, Java also embodies changes
in the way that people approach the writing of programs. For example, Java enhanced
and refined the object-oriented paradigm used by C++, added integrated support for
multithreading, and provided a library that simplified Internet access. In the final analysis,

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

8 PARTI The Java Language

though, it was not the individual features of Java that made it so remarkable. Rather, it was
the language as a whole. Java was the perfect response to the demands of the then newly
emerging, highly distributed computing universe. Java was to Internet programming what
C was to system programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become part
of the baseline for any new language. The success of Java is simply too important to ignore.
Perhaps the most important example of Java’s influence is CG#. Created by Microsoft to
support the NET Framework, C# is closely related to Java. For example, both share the
same general syntax, support distributed programming, and utilize the same object model.
There are, of course, differences between Java and C#, but the overall “look and feel” of
these languages is very similar. This “cross-pollination” from Java to C# is the strongest
testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had
a profound effect on the Internet. In addition to simplifying web programming in general,
Java innovated a new type of networked program called the applet that changed the way
the online world thought about content. Java also addressed some of the thorniest issues
associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet
and automatically executed by a Java-compatible web browser. Furthermore, an applet is
downloaded on demand, without further interaction with the user. If the user clicks a link
that contains an applet, the applet will be automatically downloaded and run in the browser.
Applets are intended to be small programs. They are typically used to display data provided
by the server, handle user input, or provide simple functions, such as a loan calculator, that
execute locally, rather than on the server. In essence, the applet allows some functionality to
be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the
universe of objects that can move about freely in cyberspace. In general, there are two very
broad categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you
are viewing passive data. Even when you download a program, the program’s code is still
only passive data until you execute it. By contrast, the applet is a dynamic, self-executing
program. Such a program is an active agent on the client computer, yet it is initiated by
the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be
able to run in a variety of different environments and under different operating systems.
As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit
more closely at each.

01-ch01.indd 8 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

01-chO1.indd 9

Chapter 1 The History and Evolution of Java 9

Security

As you are likely aware, every time you download a “normal” program, you are taking a risk,
because the code you are downloading might contain a virus, Trojan horse, or other harmful
code. At the core of the problem is the fact that malicious code can cause its damage because
it has gained unauthorized access to system resources. For example, a virus program might
gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java to
enable applets to be downloaded and executed on the client computer safely, it was necessary
to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is
accomplished shortly.) The ability to download applets with confidence that no harm will
be done and that no security will be breached may have been the single most innovative
aspect of Java.

Portability

Portability is 2 major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on
virtually any computer connected to the Internet, there needed to be some way to enable
that program to execute on different systems. For example, in the case of an applet, the
same applet must be able to be downloaded and executed by the wide variety of CPUs,
operating systems, and browsers connected to the Internet. It is not practical to have
different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’'s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as
an interpreter for bylecode. This may come as a bit of a surprise since many modern languages
are designed to be compiled into executable code because of performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major
problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected
to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode
by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

10

PART| The Java Language

side effects outside of the system. As you will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted
by a virtual machine, it runs slower than it would run if compiled to executable code.
However, with Java, the differential between the two is not so great. Because bytecode has
been highly optimized, the use of bytecode enables the JVM to execute programs much
faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, the HotSpot technology was introduced not long after Java’s initial release.
HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part
of the JVM, selected portions of bytecode are compiled into executable code in real time,
on a piece-by-piece, demand basis. It is important to understand that it is not practical to
compile an entire Java program into executable code all at once, because Java performs
various run-time checks that can be done only at run time. Instead, a JIT compiler compiles
code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply
interpreted. However, the just-in-time approach still yields a significant performance boost.
Even when dynamic compilation is applied to bytecode, the portability and safety features
still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side

As useful as applets can be, they are just one half of the client/server equation. Not long
after the initial release of Java, it became obvious that Java would also be useful on the
server side. The result was the serviet. A servlet is a small program that executes on the
server. Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server. Thus, with the advent of the servlet,
Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the
client. For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is sent
to the browser. Although dynamically generated content is available through mechanisms
such as CGI (Common Gateway Interface), the servlet offers several advantages, including
increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed by
the JVM, they are highly portable. Thus, the same servlet can be used in a variety of
different server environments. The only requirements are that the server support the JVM
and a servlet container.

The Java Buzzwords

01-ch01.indd 10

No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

* Simple

e Secure

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

01-chO1.indd 11

Chapter 1 The History and Evolution of Java 11

e Portable

® Object-oriented

* Robust

e Multithreaded

¢ Architecture-neutral
¢ Interpreted

* High performance
e Distributed

¢ Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine
what each of the others implies.

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and

the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to
extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To gain
reliability, Java restricts you in a few key areas to force you to find your mistakes early in
program development. At the same time, Java frees you from having to worry about many
of the most common causes of programming errors. Because Java is a strictly typed
language, it checks your code at compile time. However, it also checks your code at run
time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time
situations are simply impossible to create in Java. Knowing that what you have written
will behave in a predictable way under diverse conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

12

01-ch01.indd 12

PART| The Java Language

programming environments. For example, in C/C++, the programmer will often manually
allocate and free all dynamic memory. This sometimes leads to problems, because
programmers will either forget to free memory that has been previously allocated or,
worse, try to free some memory that another part of their code is still using. Java virtually
eliminates these problems by managing memory allocation and deallocation for you. (In fact,
deallocation is completely automatic, because Java provides garbage collection for unused
objects.) Exceptional conditions in traditional environments often arise in situations such
as division by zero or “file not found,” and they must be managed with clumsy and hard-to-
read constructs. Java helps in this area by providing object-oriented exception handling. In
a well-written Java program, all run-time errors can—and should—be managed by your
program.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows you
to write programs that do many things simultaneously. The Java run-time system comes with
an elegant yet sophisticated solution for multiprocess synchronization that enables you to
construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading
allows you to think about the specific behavior of your program, not the multitasking
subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. At the time
of Java’s creation, one of the main problems facing programmers was that no guarantee
existed that if you wrote a program today, it would run tomorrow—even on the same
machine. Operating system upgrades, processor upgrades, and changes in core system
resources can all combine to make a program malfunction. The Java designers made
several hard decisions in the Java language and the Java Virtual Machine in an attempt to
alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great
extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling into
an intermediate representation called Java bytecode. This code can be executed on any
system that implements the Java Virtual Machine. Most previous attempts at cross-platform
solutions have done so at the expense of performance. As explained earlier, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 1 The History and Evolution of Java 13

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used
to verify and resolve accesses to objects at run time. This makes it possible to dynamically link
code in a safe and expedient manner. This is crucial to the robustness of the Java environment,
in which small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java

The initial release of Java was nothing short of revolutionary, but it did not mark the end of
Java’s era of rapid innovation. Unlike most other software systems that usually settle into a
pattern of small, incremental improvements, Java continued to evolve at an explosive pace.
Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The
features added by Java 1.1 were more significant and substantial than the increase in the
minor revision number would have you think. Java 1.1 added many new library elements,
redefined the way events are handled, and reconfigured many features of the 1.0 library. It
also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,
Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the
first release of Java 2 used the 1.2 version number. The reason is that it originally referred
to the internal version number of the Java libraries, but then was generalized to refer to
the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections
Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2
also contained a few deprecations. The most important affected the Thread class in which
the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,
it added to existing functionality and “tightened up” the development environment. In
general, programs written for version 1.2 and those written for version 1.3 are source-code
compatible. Although version 1.3 contained a smaller set of changes than the preceding
three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important
upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/0 subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes
were made throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous
Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally
expanded the scope, power, and range of the language. To grasp the magnitude of the
changes that J2SE 5 made to Java, consider the following list of its major new features:

e Generics

e Annotations

01-ch01.indd 13 14/02/14 4:41 PM

(c) ketadton.com: The Digital Library

14

01-chO1.indd 14

PART| The Java Language

* Autoboxing and auto-unboxing

® Enumerations

* Enhanced, for-each style for loop

¢ Variable-length arguments (varargs)
e Static import

e Formatted I/O

e Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represented
a significant addition to the Java language. Some, such as generics, the enhanced for, and
varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing,
altered the semantics of the language. Annotations added an entirely new dimension to
programming. In all cases, the impact of these additions went beyond their direct effects.
They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number “5.”
The next version number for Java would normally have been 1.5. However, the new features
were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of
the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing
that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was
called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its
internal version number, which is also referred to as the developer version number. The
“6” in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6. Sun once again decided to change the
name of the Java platform. First, notice that the “2” was dropped. Thus, the platform was
now named Java SE, and the official product name was Java Platform, Standard Edition 6.

The Java Development Kit was called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product
version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added
no major features to the Java language proper, but it did enhance the API libraries, added
several new packages, and offered improvements to the runtime. It also went through several
updates during its (in Java terms) long life cycle, with several upgrades added along the way.
In general, Java SE 6 served to further solidify the advances made by J2SE 5.

Java SE 7 was the next release of Java, with the Java Development Kit being called JDK 7,
and an internal version number of 1.7. Java SE 7 was the first major release of Java since
Sun Microsystems was acquired by Oracle. Java SE 7 contained many new features, including
significant additions to the language and the API libraries. Upgrades to the Java run-time
system that support non-Java languages were also included, but it is the language and
library additions that were of most interest to Java programmers.

The new language features were developed as part of Project Coin. The purpose of
Project Coin was to identify a number of small changes to the Java language that would be
incorporated into JDK 7. Although these features were collectively referred to as “small,”
the effects of these changes have been quite large in terms of the code they impact. In fact, for

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 1 The History and Evolution of Java 15

many programmers, these changes may well have been the most important new features in
Java SE 7. Here is a list of the language features added by JDK 7:

¢ A String can now control a switch statement.
® Binary integer literals.
e Underscores in numeric literals.

¢ An expanded try statement, called try-with-resources, that supports automatic resource
management. (For example, streams can be closed automatically when they are no
longer needed.)

¢ Type inference (via the diamond operator) when constructing a generic instance.

¢ Enhanced exception handling in which two or more exceptions can be caught by a
single catch (multi-catch) and better type checking for exceptions that are rethrown.

¢ Although not a syntax change, the compiler warnings associated with some types of
varargs methods were improved, and you have more control over the warnings.

As you can see, even though the Project Coin features were considered small changes to
the language, their benefits were much larger than the qualifier “small” would suggest. In
particular, the try-with-resources statement has profoundly affected the way that stream-based
code is written. Also, the ability to use a String to control a switch statement was a long-
desired improvement that simplified coding in many situations.

Java SE 7 made several additions to the Java API library. Two of the most important were
the enhancements to the NIO Framework and the addition of the Fork/Join Framework.
NIO (which originally stood for New I/0) was added to Java in version 1.4. However, the
changes added by Java SE 7 fundamentally expanded its capabilities. So significant were
the changes, that the term N/O.2is often used.

The Fork/Join Framework provides important support for parallel programming. Parallel
programming is the name commonly given to the techniques that make effective use of
computers that contain more than one processor, including multicore systems. The
advantage that multicore environments offer is the prospect of significantly increased
program performance. The Fork/Join Framework addressed parallel programming by

¢ Simplifying the creation and use of tasks that can execute concurrently
¢ Automatically making use of multiple processors
Therefore, by using the Fork/Join Framework, you can easily create scaleable
applications that automatically take advantage of the processors available in the execution

environment. Of course, not all algorithms lend themselves to parallelization, but for those
that do, a significant improvement in execution speed can be obtained.

Java SE 8

The newest release of Java is Java SE 8, with the developer’s kit being called JDK 8. It has
an internal version number of 1.8. JDK 8 represents a very significant upgrade to the Java
language because of the inclusion of a far-reaching new language feature: the lambda
expression. The impact of lambda expressions will be profound, changing both the way that

01-ch01.indd 15 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

16 PARTI The Java Language

programming solutions are conceptualized and how Java code is written. As explained in
detail in Chapter 15, lambda expressions add functional programming features to Java. In
the process, lambda expressions can simplify and reduce the amount of source code
needed to create certain constructs, such as some types of anonymous classes. The addition
of lambda expressions also causes a new operator (the —>) and a new syntax element to be
added to the language. Lambda expressions help ensure that Java will remain the vibrant,
nimble language that users have come to expect.

The inclusion of lambda expressions has also had a wide-ranging effect on the Java
libraries, with new features being added to take advantage of them. One of the most
important is the new stream API, which is packaged in java.util.stream. The stream API
supports pipeline operations on data and is optimized for lambda expressions. Another
very important new package is java.util.function. It defines a number of functional interfaces,
which provide additional support for lambda expressions. Other new lambda-related features
are found throughout the API library.

Another lambda-inspired feature affects interface. Beginning with JDK 8, it is now
possible to define a default implementation for a method specified by an interface. If no
implementation for a default method is created, then the default defined by the interface
is used. This feature enables interfaces to be gracefully evolved over time because a new
method can be added to an interface without breaking existing code. It can also streamline
the implementation of an interface when the defaults are appropriate. Other new features
in JDK 8 include a new time and date API, type annotations, and the ability to use parallel
processing when sorting an array, among others. JDK 8 also bundles support for JavaFX 8,
the latest version of Java’s new GUI application framework. JavaFX is expected to soon play
an important part in nearly all Java applications, ultimately replacing Swing for most
GUlI-based projects. Part IV of this book provides an introduction to it.

In the final analysis, Java SE 8 is a major release that profoundly expands the capabilities
of the language and changes the way that Java code is written. Its effects will be felt throughout
the Java universe and for years to come. It truly is that important of a upgrade.

The material in this book has been updated to reflect Java SE 8, with many new features,
updates, and additions indicated throughout.

A Culture of Innovation

Since the beginning, Java has been at the center of a culture of innovation. Its original release
redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode
changed the way we think about security and portability. The applet (and then the servlet)
made the Web come alive. The Java Community Process (JCP) redefined the way that new
ideas are assimilated into the language. The world of Java has never stood still for very long.
Java SE 8 is the latest release in Java’s ongoing, dynamic history.

01-ch01.indd 16 14/02/14 4:41 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

CHAPTER

An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation. Rather,
they work together to form the language as a whole. However, this interrelatedness can
make it difficult to describe one aspect of Java without involving several others. Often a
discussion of one feature implies prior knowledge of another. For this reason, this chapter
presents a quick overview of several key features of Java. The material described here will
give you a foothold that will allow you to write and understand simple programs. Most of
the topics discussed will be examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming

Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to
at least some extent object-oriented. OOP is so integral to Java that it is best to understand
its basic principles before you begin writing even simple Java programs. Therefore, this
chapter begins with a discussion of the theoretical aspects of OOP.

Two Paradigms

All computer programs consist of two elements: code and data. Furthermore, a program
can be conceptually organized around its code or around its data. That is, some programs
are written around “what is happening” and others are written around “who is being
affected.” These are the two paradigms that govern how a program is constructed. The first
way is called the process-oriented model. This approach characterizes a program as a series of
linear steps (that is, code). The process-oriented model can be thought of as code acting on
data. Procedural languages such as C employ this model to considerable success. However,
as mentioned in Chapter 1, problems with this approach appear as programs grow larger
and more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can
be characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

17

02-ch02.indd 17 14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

18

02-ch02.indd 18

PART| The Java Language

Abstraction

An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape or MP3
player. The point is that you manage the complexity of the car (or any other complex
system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do
something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three OOP Principles

All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s
take a look at these concepts now.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed by
other code defined outside the wrapper. Access to the code and data inside the wrapper is
tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting
this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gearshift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

02-ch02.indd 19

Chapter 2 AnOverviewof Java 19

transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming. The
power of encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in
great detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
Jfunction.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance

Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

20 PARTI The Java Language

Public ¥ A Class

instance variables
(not recommended)

Public * \

methods

A
, A
Private A JAY A ‘v
methods / ’ /

Private L

instance variables

Figure 2-1 Encapsulation: public methods can be used to protect private data.

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth and mammary glands. This is known as a
subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the
attributes from animals. A deeply inherited subclass inherits all of the attributes from each
of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the
rest of the code in the system.

[Mammal] [Reptile...]

(_Canine) (Feline..)

[Domesticus] [Lupus...]

[Retriever] [Poodle...]

[Labrador] [Golden]

02-ch02.indd 20 14/02/14 4:42 PM

(c) ketallton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 2 An Overview of Java 21

Animal
L Sex
Weight

Part |

Mammal Gestation
@ Period

‘-Iuntmg Skills Canine

Leash Trained? »
Indoor/ Outdoor

Domesticus

"\
/

Retriever

‘uck Hunting Trained?

AKC Certified?

Figure 2-2 Labrador inherits the encapsulation of all its superclasses.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature
of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-
point values, and one for characters. The algorithm that implements each stack is the same,
even though the data being stored differs. In a non—object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

02-ch02.indd 21 14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

22

02-ch02.indd 22

PART | The Java Language

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to a
group of related activities. This helps reduce complexity by allowing the same interface to
be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a
cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together

When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scaleable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their
common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas
pedals hide an incredible array of complexity with an interface so simple you can operate
them with your feet! The implementation of the engine, the style of brakes, and the size of
the tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented
principles, the various parts of a complex program can be brought together to form a
cohesive, robust, maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

02-ch02.indd 23

Chapter 2 AnOverview of Java 23

will see, many of the features supplied by Java are part of its built-in class libraries, which do
make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program

Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.

/*
This is a simple Java program.
Call this file "Example.java".
*/
class Example {
// Your program begins with a call to main() .
public static void main(String args[]) {
System.out.println("This is a simple Java program.") ;

}
}

NOTE The descriptions that follow use the standard Java SE 8 Development Kit (JDK 8), which is available
from Oracle. If you are using an integrated development environment (IDE), then you will need to follow
a different procedure for compiling and executing Java programs. In this case, consult your IDE’s
documentation for details.

Entering the Program

For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,

the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains
(among other things) one or more class definitions. (For now, we will be using source files
that contain only one class.) The Java compiler requires that a source file use the .java
filename extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of the main class should match the name of the file that holds the
program. You should also make sure that the capitalization of the filename matches the
class name. The reason for this is that Java is case-sensitive. At this point, the convention
that filenames correspond to class names may seem arbitrary. However, this convention
makes it easier to maintain and organize your programs.

Compiling the Program

To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of
the program. As discussed earlier, the Java bytecode is the intermediate representation of

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

24

02-ch02.indd 24

PART | The Java Language

your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher called java. To
do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example
When the program is run, the following output is displayed:
This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for a
file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program

Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.
The program begins with the following lines:

/*
This is a simple Java program.
Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler.
Instead, a comment describes or explains the operation of the program to anyone who is
reading its source code. In this case, the comment describes the program and reminds you
that the source file should be called Example.java. Of course, in real applications, comments
generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is
called a multiline comment. This type of comment must begin with /* and end with */.
Anything between these two comment symbols is ignored by the compiler. As the name
suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example

is an identifier that is the name of the class. The entire class definition, including all of its
members, will be between the opening curly brace ({) and the closing curly brace (}). For
the moment, don’t worry too much about the details of a class except to note that in Java,
all program activity occurs within one. This is one reason why all Java programs are (at least
a little bit) object-oriented.

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

02-ch02.indd 25

Chapter 2 AnOverview of Java 25

The next line in the program is the single-line comment, shown here:
// Your program begins with a call to main() .

This is the second type of comment supported by Java. A single-line comment begins with a //
and ends at the end of the line. As a general rule, programmers use multiline comments for
longer remarks and single-line comments for brief, line-by-line descriptions. The third type
of comment, a documentation comment, will be discussed in the “Comments” section later in
this chapter.

The next line of code is shown here:

public static void main(String args[1) ({

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves a
detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at
each part now.

The public keyword is an access modifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public is
private, which prevents a member from being used by code defined outside of its class.) In
this case, main() must be declared as public, since it must be called by code outside of its
class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind
that Java is case-sensitive. Thus, Main is different from main. It is important to understand
that the Java compiler will compile classes that do not contain a main() method. But java
has no way to run these classes. So, if you had typed Main instead of main, the compiler
would still compile your program. However, java would report an error because it would be
unable to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one.
String args[] declares a parameter named args, which is an array of instances of the class
String. (Arrays are collections of similar objects.) Objects of type String store character
strings. In this case, args receives any command-line arguments present when the program
is executed. This program does not make use of this information, but other programs
shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

26

PART | The Java Language

One other point: main() is simply a starting place for your program. A complex
program will have dozens of classes, only one of which will need to have a main() method
to get things started. Furthermore, in some cases, you won’t need main() at all. For example,
when creating applets—Java programs that are embedded in web browsers—you won’t use
main() since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.") ;

This line outputs the string "This is a simple Java program.” followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display other
types of information, too. The line begins with System.out. While too complicated to explain
in detail at this time, briefly, System is a predefined class that provides access to the system,
and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most
real-world Java applications. Since most modern computing environments are windowed and
graphical in nature, console I/0O is used mostly for simple utility programs, demonstration
programs, and server-side code. Later in this book, you will learn other ways to generate
output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program

02-ch02.indd 26

Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you may know, a variable is a named memory location that may be assigned a
value by your program. The value of a variable may be changed during the execution of the
program. The next program shows how a variable is declared and how it is assigned a value.
The program also illustrates some new aspects of console output. As the comments

at the top of the program state, you should call this file Example2.java.

/*

Here is another short example.

Call this file "Example2.java".
*/
class Example2 {

public static void main(String args []) {

int num; // this declares a variable called num
num = 100; // this assigns num the value 100
System.out.println("This is num: " + num);

num = num * 2;

System.out.print ("The value of num * 2 is ");

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

02-ch02.indd 27

Chapter 2 An Overview of Java 27

System.out.println (num) ;

}
}

When you run this program, you will see the following output:

This is num: 100
The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.
Following is the general form of a variable declaration:

lype var-name;

Here, type specifies the type of variable being declared, and varnameis the name of the
variable. If you want to declare more than one variable of the specified type, you may use a
comma-separated list of variable names. Java defines several data types, including integer,
character, and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string "This is num:".

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it.
This process is described in detail later in this book.) This approach can be generalized.
Using the + operator, you can join together as many items as you want within a single
println() statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out.print ("The value of num * 2 is ");
System.out.println (num) ;

Several new things are occurring here. First, the built-in method print() is used to display
the string "The value of num * 2 is ". This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

14/02/14 4:42 PM

(c) ketadton.com: The Digital Library

28

PART| The Java Language

Two Control Statements

02-ch02.indd 28

Although Chapter 5 will look closely at control statements, two are briefly introduced here
so that they can be used in example programs in Chapters 3 and 4. They will also help
illustrate an important aspect of Java: blocks of code.

The if Statement

The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if (condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if (num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is true,
and println() will execute. If num contains a value greater than or equal to 100, then the
println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning

< Less than

> Greater than
== Equal to

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*

Demonstrate the if.

Call this file "IfSample.java".
*/
class IfSample {
public static void main(String args[]) {
int x, y;

x = 10;
y = 20;

if(x < y) System.out.println("x is less than y");

X =X * 2;
if(x == y) System.out.println("x now equal to y");

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 2 An Overview of Java 29

X =X * 2;
)

if(x > y) System.out.println("x now greater than y");

// this won't display anything
if(x == y) System.out.println("you won't see this");

The output generated by this program is shown here:

x 1s less than y
x now equal to y
X now greater than y

Notice one other thing in this program. The line
int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop

As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for (initialization; condition; iteration) statement;

In its most common form, the nitialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop control
variable. If the outcome of that test is true, the for loop continues to iterate. If it is false,
the loop terminates. The iteration expression determines how the loop control variable is
changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*

Demonstrate the for loop.

Call this file "ForTest.java".
*/
class ForTest {
public static void main(String argsl[]) {
int x;

for(x = 0; x<10; X = x+1)
System.out.println("This is x: " + x);
}

}

This program generates the following output:

This is
This is
This is
This is

KW\ X
w N R o

02-ch02.indd 29 14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

30

PART| The Java Language

This is x: 4
This is x: 5
This is x: 6
This is x: 7
This is x: 8
This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization
portion of the for. At the start of each iteration (including the first one), the conditional
test x < 10 is performed. If the outcome of this test is true, the println() statement is
executed, and then the iteration portion of the loop is executed, which increases x by 1.
This process continues until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

X =X + 1;

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

Xt++;
Thus, the for in the preceding program will usually be written like this:
for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as — —. This operator
decreases its operand by one.

Using Blocks of Code

02-ch02.indd 30

Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
X =y;

y = 0;

// end of block

}

Here, if x is less than y, then both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to logically
link two or more statements, you do so by creating a block.

14/02/14 4:42 PM

(c) ketadton.com: The Digital Library

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 2

An Overview of Java

31

Let’s look at another example. The following program uses a block of code as the target

of a for loop.

/*

Demonstrate a block of code.

Call this file "BlockTest.java"

*/

class BlockTest {

public static void main(String argsl[])
int x,

y:

20;

Yi

// the target of this loop is a block

for(x = 0; x<10; {
System.out.println("This is x: " + Xx);
System.out.println("This is y: " + y);
y =Yy - 2;

The output generated by this program is shown here:

This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

MXK XN N KK XN XN XN XM XN X

0
20
1
18
2
16
3
14
4

iy
N

o

N W 0woJ oo Ul

In this case, the target of the for loop is a block of code and not just a single statement.

Thus, each time the loop iterates, the three statements inside the block will be executed.

This fact is, of course, evidenced by the output generated by the program.
As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

02-ch02.indd 31

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

32

PART| The Java Language

Lexical Issues

02-ch02.indd 32

Now that you have seen several short Java programs, it is time to more formally describe the
atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace

Java is a free-form language. This means that you do not need to follow any special
indentation rules. For instance, the Example program could have been written all on one
line or in any other strange way you felt like typing it, as long as there was at least one
whitespace character between each token that was not already delineated by an operator
or separator. In Java, whitespace is a space, tab, or newline.

Identifiers

Identifiers are used to name things, such as classes, variables, and methods. An identifier
may be any descriptive sequence of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters. (The dollar-sign character is not intended for
general use.) They must not begin with a number, lest they be confused with a numeric
literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some
examples of valid identifiers are

| AvgTemp | count | a4 | $test this_is_ok

Invalid identifier names include these:

| 2count | high-temp | Not/ok |

NOTE Beginning with JDK 8, the use of an underscore by itself as an identifier is not recommended.

Literals

A constant value in Java is created by using a literal representation of it. For example, here
are some literals:

| 100 | 986 X “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the third
is a character constant, and the last is a string. A literal can be used anywhere a value of its
type is allowed.

Comments

As mentioned, there are three types of comments defined by Java. You have already seen
two: single-line and multiline. The third type is called a documentation comment. This type
of comment is used to produce an HTML file that documents your program. The

14/02/14 4:42 PM

02-ch02.indd 33

(c) ketatlton.com: The Digital Library

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 2~ An Overview of Java

documentation comment begins with a /** and ends with a */. Documentation comments
are explained in the Appendix.

Separators

In Java, there are a few characters that are used as separators. The most commonly used
separator in Java is the semicolon. As you have seen, it is used to terminate statements. The
separators are shown in the following table:

33

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and
invocation. Also used for defining precedence in expressions,
containing expressions in control statements, and surrounding
cast types.

{} Braces Used to contain the values of automatically initialized arrays.
Also used to define a block of code, for classes, methods, and
local scopes.

[1] Brackets Used to declare array types. Also used when dereferencing array
values.

R Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also
used to chain statements together inside a for statement.

Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.
Colons Used to create a method or constructor reference.
(Added by JDK 8.)

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These
keywords, combined with the syntax of the operators and separators, form the foundation

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while
Table 2-1 Java Keywords

14/02/14 4:42 PM

(c) ketadton.com: The Digital Library

34

PART| The Java Language

of the Java language. These keywords cannot be used as identifiers. Thus, they cannot be
used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java defines only the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes, and
o on.

The Java Class Libraries

02-ch02.indd 34

The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are available through System.out.
System is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string handling, networking,
and graphics. The standard classes also provide support for a graphical user interface
(GUI). Thus, Java as a totality is a combination of the Java language itself, plus its standard
classes. As you will see, the class libraries provide much of the functionality that comes with
Java. Indeed, part of becoming a Java programmer is learning to use the standard Java
classes. Throughout Part I of this book, various elements of the standard library classes and
methods are described as needed. In Part II, several class libraries are described in detail.

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:42 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

03-ch03.indd 35

CHAPTER

Data Types, Variables,
and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables, and
arrays. As with all modern programming languages, Java supports several types of data. You
may use these types to declare variables and to create arrays. As you will see, Java’s approach
to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language

It is important to state at the outset that Java is a strongly typed language. Indeed, part

of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and
boolean. The primitive types are also commonly referred to as simple types, and both
terms will be used in this book. These can be put in four groups:

¢ Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

¢ Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

¢ Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

* Boolean This group includes boolean, which is a special type for representing
true/false values.

35

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

36 PARTI The Java Language

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non—object-oriented languages. The reason for this
is efficiency. Making the primitive types into objects would have degraded performance
too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in
order to achieve portability.

Let’s look at each type of data in turn.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of
unsigned was used mostly to specify the behavior of the high-order bit, which defines the sign
of an integer value. As you will see in Chapter 4, Java manages the meaning of the high-
order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for
an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that type.
The Java run-time environment is free to use whatever size it wants, as long as the types
behave as you declared them. The width and ranges of these integer types vary widely, as
shown in this table:

Name Width Range

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
int 32 -2,147,483,648 to 2,147,483,647

short 16 -32,768 to 32,767

byte 8 -128 to 127

Let’s look at each type of integer.

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from -128 to
127. Variables of type byte are especially useful when you’re working with a stream of data
from a network or file. They are also useful when you’re working with raw binary data that
may not be directly compatible with Java’s other built-in types.

03-ch03.indd 36 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 37

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short

short is a signed 16-bit type. It has a range from 32,768 to 32,767. It is probably the least-
used Java type. Here are some examples of short variable declarations:

short s;
short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range
from —2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression, they are promoted to int when the expression is

evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the
best choice when an integer is needed.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days:

// Compute distance light travels using long variables.
class Light {
public static void main(String argsl[]) {
int lightspeed;
long days;
long seconds;
long distance;

// approximate speed of light in miles per second
lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance
System.out.print ("In " + days);

System.out.print (" days light will travel about ") ;
System.out.println(distance + " miles.");

03-ch03.indd 37 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

38 PARTI The Java Language

This program generates the following output:
In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or
transcendentals such as sine and cosine, result in a value whose precision requires a floating-
point type. Java implements the standard (IEEE-754) set of floating-point types and
operators. There are two kinds of floating-point types, float and double, which represent
single- and double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range
double 64 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 3.4e+038

Each of these floating-point types is examined next.

float

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are
useful when you need a fractional component, but don’t require a large degree of precision.
For example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions,
such as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy
over many iterative calculations, or are manipulating large-valued numbers, double is the
best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area
public static void main(String args[]) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately

03-ch03.indd 38 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 39

a =pi *r * r; // compute area

System.out.println("Area of circle is " + a);
}
1

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This
is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a
fully international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. At the time of Java's creation, Unicode required
16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no
negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is
designed to allow programs to be written for worldwide use, it makes sense that it would use
Unicode to represent characters. Of course, the use of Unicode is somewhat inefficient for
languages such as English, German, Spanish, or French, whose characters can easily be
contained within 8 bits. But such is the price that must be paid for global portability.

NOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
public static void main(String args[])
char chl, ch2;

chl 88; // code for X
ch2 = 'Y';

System.out.print ("chl and ch2: ");
System.out.println(chl + " " + ch2);

}
}

This program displays the following output:
chl and ch2: X Y

Notice that chl is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

03-ch03.indd 39 17/02/14 2:23 PM

(c) ketadton.com: The Digital Library

40

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

PART| The Java Language

Although char is designed to hold Unicode characters, it can also be used as an integer
type on which you can perform arithmetic operations. For example, you can add two

characters together, or increment the value of a character variable. Consider the following
program:

// char variables behave like integers.
class CharDemo2 ({

public static void main(String argsl[]) {
char chil;

chl = 'X';
System.out.println("chl contains " + chl);

chl++; // increment chil
System.out.println("chl is now " + chl);

}
}

The output generated by this program is shown here:

chl contains X
chl is now Y

In the program, chl is first given the value X. Next, chl is incremented. This results in chl
containing Y, the next character in the ASCII (and Unicode) sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which means that it is
in the same general category as int, short, long, and byte. However, because its principal use is for
representing Unicode characters, char is commonly considered to be in a category of its own.

Booleans

03-ch03.indd 40

Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a <b. boolean is also the type required by the conditional expressions that govern the
control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {

public static void main(String argsl[]) {
boolean b;

b = false;
System.out.println("b is " + b);

b = true;
System.out .println("b is " + b);

// a boolean value can control the if statement
if (b) System.out.println("This is executed.");

b = false;

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 41

if (b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

}
}

The output generated by this program is shown here:

b is false

b is true

This is executed.
10 > 9 1is true

There are three interesting things to notice about this program. First, as you can see,
when a boolean value is output by println(), "true" or "false" is displayed. Second, the value
of a boolean variable is sufficient, by itself, to control the if statement. There is no need to
write an if statement like this:

if (b == true) ..

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10>9 displays the value "true." Further, the extra set of parentheses around 10>9
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals

Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals

Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. Two other bases that can be used in integer
literals are octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java by a
leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7
range. A more common base for numbers used by programmers is hexadecimal, which
matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a
hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is
0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.
An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, Ox 7T

03-ch03.indd 41 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

42 PARTI The Java Language

or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Beginning with JDK 7, you can also specify integer literals using binary. To do so, prefix
the value with Ob or 0B. For example, this specifies the decimal value 10 using a binary
literal:

int x = 0b1010;

Among other uses, the addition of binary literals makes it easier to enter values used as
bitmasks. In such a case, the decimal (or hexadecimal) representation of the value does not
visually convey its meaning relative to its use. The binary literal does.

Also beginning with JDK 7, you can embed one or more underscores in an integer
literal. Doing so makes it easier to read large integer literals. When the literal is compiled,
the underscores are discarded. For example, given

int x = 123 _456_789;

the value given to x will be 123,456,789. The underscores will be ignored. Underscores can
only be used to separate digits. They cannot come at the beginning or the end of a literal. It
is, however, permissible for more than one underscore to be used between two digits. For
example, this is valid:

int x = 123 456 789 ;

The use of underscores in an integer literal is especially useful when encoding such
things as telephone numbers, customer ID numbers, part numbers, and so on. They are
also useful for providing visual groupings when specifying binary literals. For example,
binary values are often visually grouped in four-digits units, as shown here:

int x = 0b1101 0101 0001 1010;

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole
number component followed by a decimal point followed by a fractional component. For
example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point numbers.
Scientific notation uses a standard-notation, floating-point number plus a suffix that specifies
a power of 10 by which the number is to be multiplied. The exponent is indicated by an E
or efollowed by a decimal number, which can be positive or negative. Examples include
6.022E23, 314159E-05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an For fto the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes
64 bits of storage, while the smaller float type requires only 32 bits.

Hexadecimal floating-point literals are also supported, but they are rarely used. They
must be in a form similar to scientific notation, but a P or p, rather than an E or e, is used.
For example, 0x12.2P2 is a valid floating-point literal. The value following the P, called the

03-ch03.indd 42 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 43

binary exponent, indicates the power-of-two by which the number is multiplied. Therefore,
0x12.2P2 represents 72.5.

Beginning with JDK 7, you can embed one or more underscores in a floating-point
literal. This feature works the same as it does for integer literals, which were just described.
Its purpose is to make it easier to read large floating-point literals. When the literal is
compiled, the underscores are discarded. For example, given

double num = 9 423 497 862.0;

the value given to num will be 9,423,497,862.0. The underscores will be ignored. As is the
case with integer literals, underscores can only be used to separate digits. They cannot
come at the beginning or the end of a literal. It is, however, permissible for more than one
underscore to be used between two digits. It is also permissible to use underscores in the
fractional portion of the number. For example,

double num = 9 423 497.1 0 9;

is legal. In this case, the fractional part is .109.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the
Boolean literals can only be assigned to variables declared as boolean or used in expressions
with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that
can be converted into integers and manipulated with the integer operators, such as the
addition and subtraction operators. A literal character is represented inside a pair of single
quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as
‘a, 'z, and '@'". For characters that are impossible to enter directly, there are several escape
sequences that allow you to enter the character you need, such as '\'" for the single-quote
character itself and "\n' for the newline character. There is also a mechanism for directly
entering the value of a character in octal or hexadecimal. For octal notation, use the
backslash followed by the three-digit number. For example, "\141" is the letter 'a'. For
hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For example,
\u0061"is the ISO-Latin-1 'a’ because the top byte is zero. \\ua432' is a Japanese Katakana
character. Table 3-1 shows the character escape sequences.

String Literals

String literals in Java are specified like they are in most other languages—by enclosing a
sequence of characters between a pair of double quotes. Examples of string literals are

03-ch03.indd 43 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

4L PARTI The Java Language

Escape Sequence Description

\ddd Octal character (ddd)

\UXXXX Hexadecimal Unicode character (xxxx)
\ Single quote

\' Double quote

\ Backslash

\r Carriage return

\n New line (also known as line feed)
\f Form feed

\t Tab

\b Backspace

Table 3-1 Character Escape Sequences

"Hello World"
"two\nlines"
"\'This is in quotes\""

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation
escape sequence as there is in some other languages.

NOTE As you may know, in some other languages, including C/C++, strings are implemented as arrays of
characters. However, this is not the case in Java. Strings are actually object types. As you will see later
in this book, because Java implements strings as objects, Java includes extensive string-handling
capabilities that are both powerful and easy to use.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value [, identifier [= value] ...];

Here, typeis one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifieris the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in
mind that the initialization expression must result in a value of the same (or compatible)

03-ch03.indd 44 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 45

type as that specified for the variable. To declare more than one variable of the specified type,
use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c¢; // declares three ints, a, b, and c.

int d = 3, e, £ = 5; // declares three more ints, initializing
// d and f.

byte z = 22; // initializes =z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows
variables to be initialized dynamically, using any expression valid at the time the variable
is declared.

For example, here is a short program that computes the length of the hypotenuse of a
right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {
public static void main(String args[]) {
double a = 3.0, b = 4.0;

// ¢ is dynamically initialized
double ¢ = Math.sgrt(a * a + b * b);

System.out.println ("Hypotenuse is " + c¢);

}
}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(),
which is a member of the Math class, to compute the square root of its argument. The key
point here is that the initialization expression may use any element valid at the time of the
initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in Chapter 2,

a block is begun with an opening curly brace and ended by a closing curly brace. A block
defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope
determines what objects are visible to other parts of your program. It also determines the
lifetime of those objects.

03-ch03.indd 45 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

46

03-ch03.indd 46

PART| The Java Language

Many other computer languages define two general categories of scopes: global and
local. However, these traditional scopes do not fit well with Java’s strict, object-oriented
model. While it is possible to create what amounts to being a global scope, it is by far the
exception, not the rule. In Java, the two major scopes are those defined by a class and those
defined by a method. Even this distinction is somewhat artificial. However, since the class
scope has several unique properties and attributes that do not apply to the scope defined
by a method, this distinction makes some sense. Because of the differences, a discussion of
class scope (and variables declared within it) is deferred until Chapter 6, when classes are
described. For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this
book will look more closely at parameters in Chapter 6, for the sake of this discussion, they
work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when you declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and/or
modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.
This means that objects declared in the outer scope will be visible to code within the inner
scope. However, the reverse is not true. Objects declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope
public static void main(String args[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope
int y = 20; // known only to this block

// x and y both known here.
System.out.println("x and y: " + x + " " + y);
X =Yy *2;

}

// v = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + x);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y = 100; is commented out. If you remove the leading comment symbol,
a compile-time error will occur, because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has access to
variables declared by an enclosing scope.

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

03-ch03.indd 47

Chapter 3 Data Types, Variables, and Arrays 47

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the
code within that method. Conversely, if you declare a variable at the end of a block, it is
effectively useless, because no code will have access to it. For example, this fragment is
invalid because count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider the next
program:

// Demonstrate lifetime of a variable.
class LifeTime ({
public static void main(String args[]) {

int x;

for(x = 0; x < 3; x++) {
int vy = -1; // vy is initialized each time block is entered
System.out.println("y is: " + vy); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}

}
}

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is reinitialized to —1 each time the inner for loop is entered. Even though
it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have
the same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {
public static void main(String args[]) {
int bar = 1;

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

48 PARTI The Java Language

{ // creates a new scope
int bar = 2; // Compile-time error - bar already defined!

}
}
}

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not

all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

* The two types are compatible.

¢ The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion
is sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

03-ch03.indd 48 17/02/14 2:23 PM

(c) ketadton.com: The Digital Library

Chapter 3

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Data Types, Variables, and Arrays 49

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;

byte b;

// .

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the

target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {

public static void main(String argsl([])

byte b;
int 1 = 257;
double d = 323.142;

System.out.println ("\nConversion of
b = (byte) i;
System.out.println("i and b " + i +

System.out.println("\nConversion of
(int) 4d;
System.out.println("d and 1 "

i =
+ d +

System.out.println("\nConversion of
b = (byte) d;
System.out.println("d and b " + d +

{

int to byte.");

non

+ b);
double to int.");
"o+ i)y
double to byte.");

non

+ b);

This program generates the following output:

Conversion of int to byte.
i and b 257 1

Conversion of double to int.
d and 1 323.142 323

Conversion of double to byte.
d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the
remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When

03-ch03.indd 49

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

50 PARTI The Java Language

the d is converted to an int, its fractional component is lost. When d is converted to a byte, its
fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions

In addition to assignments, there is another place where certain type conversions may
occur: in expressions. To see why, consider the following. In an expression, the precision
required of an intermediate value will sometimes exceed the range of either operand. For
example, examine the following expression:

byte a = 40;
byte b 50;
byte c 100;
int d = a * b / c¢;

The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression
a*b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate
expression, 50 * 40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time
errors. For example, this seemingly correct code causes a problem:

byte b = 50;
b =Db * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte
variable. However, because the operands were automatically promoted to int when the
expression was evaluated, the result has also been promoted to int. Thus, the result of the
expression is now of type int, which cannot be assigned to a byte without the use of a cast.
This is true even if, as in this particular case, the value being assigned would still fit in the
target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte) (b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands are double, the result is double.

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

03-ch03.indd 50 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 51

class Promote {
public static void main(String argsl[]) {

byte b = 42;
char ¢ = 'a';
short s = 1024;
int 1 = 50000;
float £ = 5.67f;
double d = .1234;
double result = (f * b) + (i / ¢) - (d * s);
System.out.println((f * b) + " + " + (1 / ¢c) + " - " + (d * 8));
System.out.println("result = " + result);

Let’s look closely at the type promotions that occur in this line from the program:
double result = (£ * b) + (i / ¢c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i/c, ¢ is promoted to int, and the result is of type int.
Then, in d * s, the value of s is promoted to double, and the type of the subexpression is
double. Finally, these three intermediate values, float, int, and double, are considered. The
outcome of float plus an int is a float. Then the resultant float minus the last double is
promoted to double, which is the type for the final result of the expression.

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an
array is accessed by its index. Arrays offer a convenient means of grouping related
information.

NOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in those
languages.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

lype var-namel 1;

Here, type declares the element type (also called the base type) of the array. The element type
determines the data type of each element that comprises the array. Thus, the element
type for the array determines what type of data the array will hold. For example, the
following declares an array named month_days with the type “array of int”:

int month daysl];

03-ch03.indd 51 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

52

03-ch03.indd 52

PART| The Java Language

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. To link month_days with an actual, physical array of integers, you must
allocate one using new and assign it to month_days. new is a special operator that allocates
memory.

You will look more closely at new in a later chapter, but you need to use it now to
allocate memory for arrays. The general form of new as it applies to one-dimensional
arrays appears as follows:

array-var = new lype [sizel;

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-varis the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero (for numeric types), false
(for boolean), or null (for reference types, which are described in a later chapter). This
example allocates a 12-element array of integers and links them to month_days:

month days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable
of the desired array type. Second, you must allocate the memory that will hold the array,
using new, and assign it to the array variable. Thus, in Java all arrays are dynamically
allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will
be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days:

month_days[1] = 28;
The next line displays the value stored at index 3:
System.out.println (month daysI[3]);

Putting together all the pieces, here is a program that creates an array of the number of
days in each month:

// Demonstrate a one-dimensional array.
class Array {

public static void main(String argsl[]) {

int month dayslI];

month days = new int[12];

month days[0] = 31;

month days[1] = 28;

month days([2] = 31;

month days([3] = 30;

month days[4] = 31;

month days([5] = 30;

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 53

month days[6] = 31;
month days[7] = 31;
month days[8] = 30;
month days[9] = 31;

month days[10] = 30;
month days[11] = 31;
System.out.println("April has " + month days[3] + " days.");
}
}

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.

Arrays can be initialized when they are declared. The process is much the same as that
used to initialize the simple types. An array initializeris a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The
array will automatically be created large enough to hold the number of elements you specify
in the array initializer. There is no need to use new. For example, to store the number of
days in each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
public static void main(String argsl[])

int month days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 };
System.out.println("April has " + month days[3] + " days.");
}
}

When you run this program, you see the same output as that generated by the previous
version.

Java strictly checks to make sure you do not accidentally try to store or reference values
outside of the range of the array. The Java run-time system will check to be sure that all
array indexes are in the correct range. For example, the run-time system will check the
value of each index into month_days to make sure that it is between 0 and 11 inclusive. If
you try to access elements outside the range of the array (negative numbers or numbers
greater than the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a
set of numbers.

// Average an array of values.
class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int 1i;

03-ch03.indd 53 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

54

03-ch03.indd 54

PART | The Java Language

for (i=0; i<5; i++)
result = result + nums/[i];
System.out.println ("Average is " + result / 5);

}
}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD:

int twoD[] [] = new int[4] [5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {
int twoD[] [1= new int[4] [5];
int i, j, k = 0;

for (i=0; i<4; i++)
for (§=0; j<5; j++) {
twoD[i] [§] = k;
k++;

}

for (i=0; i<4; i++) {
for(j=0; j<5; Jj++)
System.out.print (twoD[1] [§] + " ");
System.out .println() ;
}
}
}

This program generates the following output:

01234
56 789
10 11 12 13 14
15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 55

Right index determines column.

N

[o]fo] | [o][a] |[o][2] | [o][s]|[o][4]

Left index EV|CINIEN B EN | EXHENEXY{RAIEY

determines
Tow.

[210o] | 2] [a] |[2][2] | [2][s]| [2][4]

[s10o] | (1] |[s102] | [3][s]| [s]L4l

Given:inttwoD [] [] = new int [4] [5];

Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[] [] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int [5];
twoD[2] = new int[5];

twoD [3] new int [5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated
earlier, since multidimensional arrays are actually arrays of arrays, the length of each array
is under your control. For example, the following program creates a two-dimensional array
in which the sizes of the second dimension are unequal:

// Manually allocate differing size second dimensions.
class TwoDAgain {
public static void main(String argsl[])

int twoD[] [] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];

twoD [3] new int[4];

int i, j, k = 0;
for(i=0; i<4; i++)
for(3=0; j<i+l; F++) {

twoD [1] [§] = k;
k++;

03-ch03.indd 55 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

56 PARTI The Java Language

}

for (i=0; i<4; i++) {
for(j=0; j<i+l; j++)
System.out.print (twoD[1] [J] + " ");
System.out.println() ;

}
}
}

This program generates the following output:

o W H o
NN

5
8 9

The array created by this program looks like this:

[o][e]
EV|CINIENEY
[2]0o] | 2] [x] |[2][2]
[31lo] | B10|[s102] | 31 (]

The use of uneven (or irregular) multidimensional arrays may not be appropriate
for many applications, because it runs contrary to what people expect to find when a
multidimensional array is encountered. However, irregular arrays can be used effectively in
some situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then an irregular
array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each
dimension’s initializer within its own set of curly braces. The following program creates
a matrix where each element contains the product of the row and column indexes. Also
notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
public static void main(String args[]) {
double m[] [] = {
{ oxo0, 1*0, 2%0, 3*0
{ o*1, 1*1, 2*1, 3*1
{ 0%x2, 1*2, 2+%2, 3%2
{ 0%3, 1*3, 2%3, 3%3

e e

03-ch03.indd 56 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 57

}i

int i, 3;

for(i=0; i<4; i++) {
for(j=0; j<4; j++)
System.out.print (m[i] [§J] + " ");
System.out.println() ;

}
}
}

When you run this program, you will get the following output:

o O O o
o O O O
w N P o
o O o o
o B> N O
o O O o
w o W o
o O O O

As you can see, each row in the array is initialized as specified in the initialization lists.

Let’s look at one more example that uses a multidimensional array. The following
program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with
the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
public static void main(String argsl[]) {
int threeD[] [][] = new int[3] [4] [5];
int i, 3§, k;

for (i=0; 1<3; i++)
for(§=0; j<4; j++)
for (k=0; k<5; k++)
threeD[i] [J] [k] = 1 * j * k;

for (i=0; 1<3; i++) {
for(j=0; j<4; j++) {
for (k=0; k<5; k++)
System.out.print (threeD[1i] [j] [k] + " ");
System.out.println() ;
}
System.out .println() ;
}
}
}

This program generates the following output:

o O O o
o O O O
o O O o
o O O O
o O O o

03-ch03.indd 57 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

58 PARTI The Java Language

o O o o

w N P o

o B N O

w0 o W o
[ee]

000

4 6 8

8 12 16
12 18 24

o O O o
[OEF N S o)

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:
type[1 var-name,

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twodl[] [] new char[3] [4];
char[] [] twod2 = new char[3] [4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int [] nums, nums2, nums3; // create three arrays
creates three array variables of type int. It is the same as writing
int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings

As you may have noticed, in the preceding discussion of data types and arrays there has
been no mention of strings or a string data type. This is not because Java does not support
such a type—it does. It is just that Java’s string type, called String, is not a primitive type.
Nor is it simply an array of characters. Rather, String defines an object, and a full description
of it requires an understanding of several object-related features. As such, it will be covered
later in this book, after objects are described. However, so that you can use simple strings in
example programs, the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

03-ch03.indd 58 17/02/14 2:23 PM

(c) ketatlton.com: The Digital Library CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 3 Data Types, Variables, and Arrays 59

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str) ;

Here, str is an object of type String. It is assigned the string "this is a test". This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that make
them quite powerful and easy to use. However, for the next few chapters, you will be using
them only in their simplest form.

A Note to C/C++ Programmers About Pointers

If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never
need to use a pointer, nor would there be any benefit in using one.

03-ch03.indd 59 17/02/14 2:23 PM

(c) ketabton.com: The Digital Library

This page has been intentionally left blank

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

CHAPTER

Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical. Java also defines some
additional operators that handle certain special situations. This chapter describes all of
Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13 and the new arrow operator (->), which is described in Chapter 15.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition (also unary plus)

- Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

4 Increment

+= Addition assignment

-= Subtraction assignment

= Multiplication assignment

/= Division assignment
%= Modulus assignment
—-— Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

61

04-ch04.indd 61 14/02/14 4:45 PM

(c) ketadton.com: The Digital Library

62 PARTI

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

The Java Language

The Basic Arithmetic Operators

The basic arithmetic operations—addition, subtraction, multiplication, and division—all
behave as you would expect for all numeric types. The unary minus operator negates its
single operand. The unary plus operator simply returns the value of its operand. Remember
that when the division operator is applied to an integer type, there will be no fractional
component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath ({
public static void main(String args[]) {

// arithmetic using integers

System.out.println("Integer Arithmetic") ;

int
int
int
int
int

a

b_

c
d
e

1+ 1;
a
b
[¢]
-4;

7

3
4;
a

L N

7

System. ("a
System. ("b
.out.println("c = "
("d
("e

System

System.
System.

out.println ("
out.println ("

out.println ("
out.println ("

+ o+ + o+ o+
(O P o]

// arithmetic using doubles

System.

double
double
double
double
double

System.
System.
System.
System.
System.

}
}

out.println("\nFloating Point Arithmetic");

da =1 + 1;

db = da * 3;

dc = db / 4;

dd = dc - a;

de = -dd;

out.println("da = " + da);
out.println("db = " + db);
out.println("dc = " + dc);
out.println("dd = " + dd);
out.println("de = " + de);

When you run this program, you will see the following output:

Integer Arithmetic

a = 2

b =26

c =1

d = -1

e =1
Floating
da = 2.0
db = 6.0

04-ch04.indd 62

Point Arithmetic

14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 63

dec = 1.5
dd = -0.5
de = 0.5

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be
applied to floating-point types as well as integer types. The following example program
demonstrates the %:

// Demonstrate the % operator.
class Modulus {
public static void main(String args[]) {
int x = 42;
double y = 42.25;

o°

System.out.println("x mod 10 "
System.out.println("y mod 10

}

<N
o\°

}

When you run this program, you will get the following output:

x mod 10
y mod 10

2
2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.
Here is another example,

In this case, the %= obtains the remainder of a /2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.
Thus, any statement of the form

var = var op expression;

04-ch04.indd 63 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

64

04-ch04.indd 64

PART | The Java Language

can be rewritten as
var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit
of typing, because they are “shorthand” for their equivalent long forms. Second, in some
cases they are more efficient than are their equivalent long forms. For these reasons, you
will often see the compound assignment operators used in professionally written Java
programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {

public static void main(String args[]) {
int a = 1;
int b = 2;

int ¢ = 3;

a += 5;

b *= 4;

c += a * b;

c %= 6;

System.out.println("a = " + a);
System.out.println("b = " + Db);
System.out.println("c = " + c);

The output of this program is shown here:

a =6
b =28
c =3

Increment and Decrement

The ++ and the — — are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

X =X + 1;
can be rewritten like this by use of the increment operator:
X++;

Similarly, this statement:

14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 65

is equivalent to
X--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form,
the operand is incremented or decremented before the value is obtained for use in the
expression. In postfix form, the previous value is obtained for use in the expression, and
then the operand is modified. For example:

b4 42;
Y = ++X;

In this case, y is set to 43 as you would expect, because the increment occurs before x is
assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

X =X + 1;
y = X;

However, when written like this,

b4
Y

42;
X++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two

statements:
y = X;
X =X + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec
public static void main(String args[]) {

int a 1;

int b = 2;

int c;

int d;

Cc = ++b;

d = a++;

C++;

System.out.println("a = " + a);
System.out.println("b = " + Db);
System.out.println("c = " + c);
System.out.println("d = " + d);

04-ch04.indd 65 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library

66

PART| The Java Language

The output of this program follows:

0 oo
]
[EENSEREN)

The Bitwise Operators

04-ch04.indd 66

Java defines several bitwise operators that can be applied to the integer types: long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

A Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

N= Bitwise exclusive OR assignment
>>= Shift right assignment

>>>= Shift right zero fill assignment
<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer: it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a
power of two, starting with 2° at the rightmost bit. The next bit position to the left would be
2!, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits
set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 2! + 2% + 2%,
which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones. Java uses an encoding known as two’s
complement, which means that negative numbers are represented by inverting (changing 1’s
to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, —42
is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then
adding 1, which results in 11010110, or —42. To decode a negative number, first invert all

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 67

of the bits, then add 1. For example, —42, or 11010110 inverted, yields 00101001, or 41, so
when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented
by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which
creates negative zero. The trouble is that negative zero is invalid in integer math. This
problem is solved by using two’s complement to represent negative values. When using
two’s complement, 1 is added to the complement, producing 100000000. This produces a 1
bit too far to the left to fit back into the byte value, resulting in the desired behavior, where
—0 is the same as 0, and 11111111 is the encoding for —1. Although we used a byte value in
the preceding example, the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not. To
avoid unpleasant surprises, just remember that the high-order bit determines the sign of an
integer no matter how that high-order bit gets set.

The Bitwise Logical Operators

The bitwise logical operators are &, |, A, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B A|B A&B AAB ~A
0 0 0 0 0 1
1 0 1 0 1 0
0 1 1 0 1 1
1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010
becomes

11010101
after the NOT operator is applied.
The Bitwise AND

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in
all other cases. Here is an example:

00101010 42
&00001111 15

00001010 10

04-ch04.indd 67 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

PART | The Java Language

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15

00101111 47
The Bitwise XOR

The XOR operator, A, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero. The following example shows the effect of the *. This
example also demonstrates a useful attribute of the XOR operation. Notice how the bit
pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second
operand has a 0 bit, the first operand is unchanged. You will find this property useful when
performing some types of bit manipulations.

00101010 42
A 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {

public static void main(String argsl[]) {
String binary[] = {
"0000", "0001", "0010", "001l", "0100", "0101", "0110", "0111l",
"1000"1 "1001"1 "1010"1 "1011"1 ||llOOIII "llol", "lllo", l|llllll
Vi
int a = 3; // 0 + 2 + 1 or 0011 in binary
int b = 6; // 4 + 2 + 0 or 0110 in binary
int ¢ = a | b;
int d = a & b;
int e = a * b;
int £ = (~a & b)|(a & ~b);
int g = ~a & 0x0f;
System.out.println (" a = " + binarylal);
System.out .println (" b =" + binaryl[b]);
System.out.println (" alb = " + binarylcl);
System.out.println (" a&b = " + binaryl[d]);
System.out .println (" a®b = " + binarylel);
System.out.println("~a&b|a&~b = " + binary[f]);
System.out.println (" ~a = " + binarylgl);

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the

14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 69

results in ¢ and d. The values assigned to e and f are the same and illustrate how the * works.
The string array named binary holds the human-readable, binary representation of the
numbers 0 through 15. In this example, the array is indexed to show the binary representation
of each result. The array is constructed such that the correct string representation of a
binary value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in
binary) in order to reduce its value to less than 16, so it can be printed by use of the binary
array. Here is the output from this program:

a = 0011

b = 0110

alb = 0111

a&b = 0010

a’b = 0101
~a&b|a&~b = 0101
~a = 1100

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the

<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num. For each shift left, the high-order bit is shifted out (and lost), and a zero
is brought in on the right. This means that when a left shift is applied to an int operand,
bits are lost once they are shifted past bit position 31. If the operand is a long, then bits are
lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift a
byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift ({
public static void main(String args[])
byte a = 64, b;
int 1i;

-
I

= a << 2;
(byte) (a << 2);

o
1]

04-ch04.indd 69 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

70

04-ch04.indd 70

PART | The Java Language

System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + Db);

}
}

The output generated by this program is shown here:

Original value of a: 64
i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has been
shifted out.

Since each left shift has the effect of doubling the original value, programmers
frequently use this fact as an efficient alternative to multiplying by 2. But you need to watch
out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will become
negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
public static void main(String argsl[]) {
int i;
int num = OxXFFFFFFE;

for(i=0; i<4; i++)
num = num << 1;
System.out.println (num) ;

}
}
}

The program generates the following output:

536870908
1073741816
2147483632
-32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce -32. As you can see, when a 1 bit is shifted into bit 31, the number is
interpreted as negative.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 71

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a =a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8:

int a = 35;
a=a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. In some cases, you can take advantage of this for high-performance integer
division by 2.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled
in with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, -8 >> 1 is -4, which,
in binary, is

11111000 -8
>> 1
11111100 -4

It is interesting to note that if you shift —1 right, the result always remains -1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of
hexadecimal characters.

// Masking sign extension.
class HexByte {
static public void main(String args[]) {

char hex[] = {
|0|, llll '2'1 |3|I |4|, |5|, '6'1 |7|I
|8|’ '9‘, |a|, |b'l 'cl, 'd‘, |e|, |f'

byte b = (byte) O0xfl;
System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);

}
}

04-ch04.indd 71 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

72 PARTI The Java Language

Here is the output of this program:

b = 0xf1l

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a
numeric value, you may not want sign extension to take place. This situation is common
when you are working with pixel-based values and graphics. In these cases, you will
generally want to shift a zero into the high-order bit no matter what its initial value was.
This is known as an unsigned shifl. To accomplish this, you will use Java’s unsigned, shift-
right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to —1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with
zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 -1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift ({

static public void main(String args[]) {
char hex[] = {
IOII Ill, l2l, '3'1 l4ll I5l, l6l, l7|l
l8|l I9l’ lal, lbl, lcll Idl’ lel, lfl
}i
byte b = (byte) O0xfl;
byte ¢ = (byte) (b >> 4);
byte d = (byte) (b >>> 4);
byte e = (byte) ((b & O0xff) >> 4);
System.out .println (" b = ox"
+ hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
System.out.println (" b >> 4 = 0x"
+ hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
System.out.println (" b >>> 4 = ox"

+ hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

04-ch04.indd 72 14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

04-ch04.indd 73

Chapter 4 Operators 73

System.out.println("(b & 0xff) >> 4 = 0x"
+ hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is Oxff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually Oxff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

b = 0xfl

b >> 4 = 0xff

b >>> 4 = 0xff

(b & Oxff) >> 4 = 0x0f

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a =a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals
public static void main(String args[]) {

int a = 1;

int b = 2;

int ¢ = 3;

a |= 4;

b >>=1;

c <<= 1;

a *= c¢;

System.out.println("a = " + a);
System.out.println("b = " + Db);
System.out.println("c = " + c);

14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

74 PARTI The Java Language

The output of this program is shown here:

a = 3
b =1
c =6

Relational Operators

The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

1= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop

statements.
Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java

equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4
int b = 1;
boolean c

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++,
these types of statements are very common:

int done;

/...

if(!done) ... // Valid in C/C++
if (done) ... // but not in Java.

In Java, these statements must be written like this:

if (done == 0)... // This is Java-style.
if (done != 0)...

04-ch04.indd 74 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 75

The reason is that Java does not define true and false in the same way as C/C++. In C/
C++, true is any nonzero value and false is zero. In Java, true and false are nonnumeric
values that do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you
must explicitly employ one or more of the relational operators.

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

A Logical XOR (exclusive OR)
[l Short-circuit OR
&& Short-circuit AND

! Logical unary NOT
&= AND assignment

|= OR assignment

A= XOR assignment
== Equal to

I= Not equal to

2 Ternary if-then-else

The logical Boolean operators, &, |, and /, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
!true == false and !false == true. The following table shows the effect of each logical

operation:
A B A | B A&B AAB 1A
False False False False False True
True False True False True False
False True True False True True
True True True True False False

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic ({
public static void main(String args[]) {

boolean a = true;
boolean b = false;
boolean ¢ = a | b;
boolean d = a & b;

04-ch04.indd 75 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

76

04-ch04.indd 76

PART | The Java Language

boolean e = a * b;

boolean f = (la & b) | (a & !b);
boolean g = !la;

System.out.println (" a ="+ a);
System.out .println (" b="+Db);
System.out.println (" alb =" + ¢);
System.out.println (" a&b = " + d);
System.out.println (" a’b = " + e);
System.out.println("!agb|a&!b = " + £);
System.out.println (" la =" + g);

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string
representation of a Java boolean value is one of the literal values true or false:

a = true

b = false

alb = true

a&b = false

a’b = true
lagb|a&!b = true
la = false

Short-Circuit Logical Operators

Java provides two interesting Boolean operators not found in some other computer
languages. These are secondary versions of the Boolean AND and OR operators, and are
commonly known as short-circuit logical operators. As you can see from the preceding table,
the OR operator results in true when A is true, no matter what B is. Similarly, the AND
operator results in false when A is false, no matter what B is. If you use the || and && forms,
rather than the | and & forms of these operators, Java will not bother to evaluate the right-
hand operand when the outcome of the expression can be determined by the left operand
alone. This is very useful when the right-hand operand depends on the value of the left one
in order to function properly. For example, the following code fragment shows how you
can take advantage of short-circuit logical evaluation to be sure that a division operation
will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.
It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations.
However, there are exceptions to this rule. For example, consider the following statement:

if (c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether ¢
is equal to 1 or not.

14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 77

NOTE The formal specification for Java refers to the short-circuit operators as the conditional-and and
the conditional-or.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take a
formal look at it. The assignment operator is the single equal sign, =. The assignment operator
works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example, consider this
fragment:

int x, y, z;
x =y =2z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z =100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-
else statements. This operator is the ?. It can seem somewhat confusing at first, but the ?
can be used very effectively once mastered. The ? has this general form:

expressionl ? expression2 : expression3

Here, expressionl can be any expression that evaluates to a boolean value. If expressionl is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark
and the colon is evaluated and used as the value of the entire ? expression. If denom does
not equal zero, then the expression afier the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate ?.
class Ternary {
public static void main(String args[])
int i, k;

04-ch04.indd 77 14/02/14 4:45 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

78 PARTI The Java Language

i = 10;

k=1<0? -1 : 1i; // get absolute value of i
System.out.print ("Absolute value of ");
System.out.println(i + " is " + k);

i = -10;

k=1<0?-1i: 1i; // get absolute value of i
System.out .print ("Absolute value of ");
System.out.println(i + " is " + k);

}
}

The output generated by the program is shown here:

Absolute value of 10 is 10
Absolute value of -10 is 10

Operator Precedence

Table 4-1 shows the order of precedence for Java operators, from highest to lowest.
Operators in the same row are equal in precedence. In binary operations, the order of
evaluation is left to right (except for assignment, which evaluates right to left). Although
they are technically separators, the [], (), and . can also act like operators. In that capacity,
they would have the highest precedence. Also, notice the arrow operator (->). It was added
by JDK 8 and is used in lambda expressions.

Highest

++ (postfix) —— (postfix)

++ (prefix) —— (prefix) ~ ! + (unary) — (unary) (type-cast)
* / %

+ —

>> >>> <<

> >= < <= instanceof

= Op:
Lowest

Table 4-1 The Precedence of the Java Operators

04-ch04.indd 78 14/02/14 4:45 PM

(c) ketadton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 4 Operators 79

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you
will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading your
code, a complicated expression can be difficult to understand. Adding redundant but
clarifying parentheses to complex expressions can help prevent confusion later. For
example, which of the following expressions is easier to read?

a| 4+c>Dbs&7
(a | (((4 +¢c) >>Db) &7))

One other point: parentheses (redundant or not) do not degrade the performance
of your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

04-ch04.indd 79 14/02/14 4:45 PM

(c) ketabton.com: The Digital Library

This page has been intentionally left blank

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

05-ch05.indd 81

CHAPTER

Control Statements

A programming language uses control statements to cause the flow of execution to advance
and branch based on changes to the state of a program. Java’s program control statements
can be put into the following categories: selection, iteration, and jump. Selection statements
allow your program to choose different paths of execution based upon the outcome of an
expression or the state of a variable. leration statements enable program execution to
repeat one or more statements (that is, iteration statements form loops). Jump statements
allow your program to execute in a nonlinear fashion. All of Java’s control statements are
examined here.

Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control
the flow of your program’s execution based upon conditions known only during run time.
You will be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement

is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statementl;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The
else clause is optional.

The if works like this: If the condition is true, then statementl is executed. Otherwise,
statement?2 (if it exists) is executed. In no case will both statements be executed. For example,
consider the following:

int a, b;

// ...

if(a < b) a = 0;
else b = 0;

81

14/02/14 4:46 PM

(c) ketadton.com: The Digital Library

82

05-ch05.indd 82

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

PART| The Java Language

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single boolean
variable, as shown in this code fragment:

boolean dataAvailable;

/...

if (dataAvailable)
ProcessData () ;

else
waitForMoreData () ;

Remember, only one statement can appear directly after the if or the else. If you want to
include more statements, you'll need to create a block, as in this fragment:

int bytesAvailable;

/...

if (bytesAvailable > 0) {
ProcessDatal() ;
bytesAvailable -= n;

} else
waltForMoreData () ;

Here, both statements within the if block will execute if bytesAvailable is greater than zero.

Some programmers find it convenient to include the curly braces when using the if, even
when there is only one statement in each clause. This makes it easy to add another statement
at a later date, and you don’t have to worry about forgetting the braces. In fact, forgetting to
define a block when one is needed is a common cause of errors. For example, consider the
following code fragment:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) {
ProcessData () ;
bytesAvailable -= n;

} else
wailtForMoreData () ;
bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside the
else clause, because of the indentation level. However, as you recall, whitespace is insignificant
to Java, and there is no way for the compiler to know what was intended. This code will
compile without complaint, but it will behave incorrectly when run. The preceding example
is fixed in the code that follows:

int bytesAvailable;

/] ...

if (bytesAvailable > 0) ({
ProcessData () ;
bytesAvailable -= n;

} else {

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 83

waitForMoreData () ;
bytesAvailable = n;

}
Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an else
statement always refers to the nearest if statement that is within the same block as the else
and that is not already associated with an else. Here is an example:

if(1i == 10)
if(§ < 20) a = b;
if(k > 100) ¢ = d; // this if is
else a = c; // associated with this else
1
else a = d; // this else refers to if (i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in
the same block (even though it is the nearest if without an else). Rather, the final else is
associated with if(i==10). The inner else refers to if(k>100) because it is the closest if within
the same block.

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-
ifladder. It looks like this:

if (condition)
statement;

else if (condition)
statement,

else if (condition)
statement;

else
statement,

The if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest of
the ladder is bypassed. If none of the conditions is true, then the final else statement will be
executed. The final else acts as a default condition; that is, if all other conditional tests fail,
then the last else statement is performed. If there is no final else and all other conditions
are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse
public static void main(String args[]) {
int month = 4; // April
String season;

05-ch05.indd 83 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

84 PARTI The Java Language

if (month == 12 || month == || month == 2)
season = "Winter";

else if (month == || month == || month == 5)
season = "Spring";

else if (month == 6 || month == 7 || month == 8)
season = "Summer";

else if (month == || month == 10 || month == 11)
season = "Autumn";

else
season = "Bogus Month";

System.out.println("April is in the " + season + ".");

}
}

Here is the output produced by the program:
April is in the Spring.

You might want to experiment with this program before moving on. As you will find, no
matter what value you give month, one and only one assignment statement within the ladder
will be executed.

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression. As
such, it often provides a better alternative than a large series of if-else-if statements. Here is
the general form of a switch statement:

switch (expression) {
case valuel:
// statement sequence
break;
case value2:
// statement sequence
break;

case valueN :
// statement sequence
break;
default:
// default statement sequence

}

For versions of Java prior to JDK 7, expression must be of type byte, short, int, char, or an
enumeration. (Enumerations are described in Chapter 12.) Beginning with JDK 7, expression

05-ch05.indd 84 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 85

can also be of type String. Each value specified in the case statements must be a unique
constant expression (such as a literal value). Duplicate case values are not allowed. The type
of each value must be compatible with the type of expression.

The switch statement works like this: The value of the expression is compared with each of
the values in the case statements. If a match is found, the code sequence following that case
statement is executed. If none of the constants matches the value of the expression, then the
default statement is executed. However, the default statement is optional. If no case matches
and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a
break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
public static void main(String args[]) {
for(int 1=0; i<6; i++)
switch(i) {
case 0:
System.out.println("i is zero.");
break;
case 1:
System.out.println("i is one.");
break;
case 2:
System.out.println("i is two.");
break;
case 3:
System.out.println("i is three.");
break;
default:
System.out.println("i is greater than 3.");

}
}

The output produced by this program is shown here:

is zero.

is one.

is two.

is three.

is greater than 3.
is greater than 3.

I A A A

As you can see, each time through the loop, the statements associated with the case
constant that matches i are executed. All others are bypassed. After i is greater than 3,
no case statements match, so the default statement is executed.

05-ch05.indd 85 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library

86

05-ch05.indd 86

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

PART| The Java Language

The break statement is optional. If you omit the break, execution will continue on into the

next case.
them. For

// In a
class Mi
public
for (

It is sometimes desirable to have multiple cases without break statements between
example, consider the following program:

switch, break statements are optional.
ssingBreak {

static void main(String args[]) {

int i=0; 1<12; i++)

switch(i) {

}
}

case 0:
case
case
case
case 4:
System.out.println("i is less than 5");
break;
case 5:
case 6:
case 7:
case 8:
case 9:
System.out.println("i is less than 10");
break;
default:
System.out.println("i is 10 or more") ;

w NP

This program generates the following output:

is
is
is
is
is
is
is
is
is
is
is
is

I N = S S s N

less than
less than
less than
less than
less than 5
less than 10
less than 10
less than 10
less than 10
less than 10
10 or more

10 or more

[BN RN RNC]

As you can see, execution falls through each case until a break statement (or the end of the

switch) is
While
the break

reached.
the preceding example is, of course, contrived for the sake of illustration, omitting
statement has many practical applications in real programs. To sample its more

realistic usage, consider the following rewrite of the season example shown earlier. This version
uses a switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {

public
int

static void main(String args|[]) {
month = 4;

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

String season;

switch (month) {

case 12:

case 1:

case 2:
season = "Winter";
break;

case 3:

case 4:

case 5:
season = "Spring";
break;

case 6:

case 7:

case 8:
season = "Summer";
break;

case 9:

case 10:

case 11:
season = "Autumn";
break;

default:
season = "Bogus Month";

}

Chapter 5

System.out.println("April is in the " + season + ".

For example,

// Use a string to control a switch statement.

class StringSwitch

05-ch05.indd 87

public static void main(String argsl([])

String str = "two";

switch(str) {

case "one":
System.out.println("one") ;
break;

case "two":
System.out.println("two") ;
break;

case "three":
System.out.println("three") ;
break;

default:
System.out.println("no match") ;
break;

")

Control Statements

As mentioned, beginning with JDK 7, you can use a string to control a switch statement.

87

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

88 PARTI The Java Language

As you would expect, the output from the program is

two

The string contained in str (which is "two" in this program) is tested against the case
constants. When a match is found (as it is in the second case), the code sequence associated
with that sequence is executed.

Being able to use strings in a switch statement streamlines many situations. For example,
using a string-based switch is an improvement over using the equivalent sequence of if /else
statements. However, switching on strings can be more expensive than switching on integers.
Therefore, it is best to switch on strings only in cases in which the controlling data is already
in string form. In other words, don’t use strings in a switch unnecessarily.

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count)

case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

case 1: // no conflicts with outer switch
System.out .println("target is one");
break;

}

break;
case 2: //

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement
in the outer switch. The count variable is compared only with the list of cases at the outer
level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

¢ The switch differs from the if in that switch can only test for equality, whereas if can
evaluate any type of Boolean expression. That is, the switch looks only for a match
between the value of the expression and one of its case constants.

e No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

¢ A switch statement is usually more efficient than a set of nested ifs.
The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case

constants and create a “jump table” that it will use for selecting the path of execution
depending on the value of the expression. Therefore, if you need to select among a large

05-ch05.indd 88 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 89

group of values, a switch statement will run much faster than the equivalent logic coded using
a sequence of if-elses. The compiler can do this because it knows that the case constants are
all the same type and simply must be compared for equality with the switch expression. The
compiler has no such knowledge of a long list of if expressions.

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while (condition) {
// body of loop
}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only a
single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":

// Demonstrate the while loop.
class While {
public static void main(String args[])
int n = 10;

while(n > 0) {
System.out.println("tick " + n);
n--;
}
}
}

When you run this program, it will “tick” ten times:

tick
tick
tick
tick
tick
tick
tick
tick
tick
tick

o

H N WD U1y Jd oo

05-ch05.indd 89 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

90

05-ch05.indd 90

PART| The Java Language

Since the while loop evaluates its conditional expression at the top of the loop, the body of
the loop will not execute even once if the condition is false to begin with. For example, in the
following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a nuil
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
public static void main(String argsl[]) {
int i, j;

i = 100;
j = 200;

// find midpoint between i and j
while(++1i < --3j); // no body in this loop

System.out.println("Midpoint is " + 1i);
}

This program finds the midpoint between i and j. It generates the following output:
Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values of
iandj. (Of course, this procedure only works when i is less than j to begin with.) As you can
see, there is no need for a loop body; all of the action occurs within the conditional expression,
itself. In professionally written Java code, short loops are frequently coded without bodies
when the controlling expression can handle all of the details itself.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false, then
the body of the loop will not be executed at all. However, sometimes it is desirable to
execute the body of a loop at least once, even if the conditional expression is false to begin
with. In other words, there are times when you would like to test the termination expression
at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that
does just that: the do-while. The do-while loop always executes its body at least once,
because its conditional expression is at the bottom of the loop. Its general form is

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 91

do {
// body of loop
} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the
loop terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop. It
generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
public static void main(String args[])
int n = 10;

do {
System.out.println("tick " + n);
n--j

} while(n > 0);

}
}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {
System.out.println("tick " + n);
} while(--n > 0);

In this example, the expression (—-n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the — —n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise, it terminates.

The do-while loop is especially useful when you process a menu selection, because you will
usually want the body of a menu loop to execute at least once. Consider the following program,
which implements a very simple help system for Java’s selection and iteration statements:

// Using a do-while to process a menu selection
class Menu {
public static void main(String argsl([])
throws java.io.IOException {
char choice;

do {
System.out .println("Help on: ");
System.out.println("™ 1. 1if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out .println(" 4. do-while");
System.out.println(" 5. for\n");

(

System.out.println("Choose one:");

05-ch05.indd 91 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

92 PARTI The Java Language

choice = (char) System.in.read() ;
} while(choice < '1' || choice > '5');

System.out.println("\n") ;

switch(choice) ({

case '1':
System.out.println("The if:\n");
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n");
System.out .println ("switch (expression) {");
System.out.println(" case constant:");
System.out.println (" statement sequence") ;
System.out .println (" break;") ;
System.out.println(" //...");
System.out.println("}");
break;

case '3':
System.out.println ("The while:\n") ;
System.out .println("while (condition) statement;");
break;

case '4':
System.out .println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");

(

System.out .println("} while (condition);");
break;
case '5':

System.out.println("The for:\n");
System.out.print ("for (init; condition; iteration)");
System.out.println(" statement;");

break;

}
}
}

Here is a sample run produced by this program:

Help on:
1. if
2. switch
3. while
4. do-while
5. for
Choose one:
4
The do-while:
do {
statement;

} while (condition) ;

05-ch05.indd 92 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 93

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the
do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press ENTER before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point
to consider: Because System.in.read() is being used, the program must specify the
throws java.io.IOException clause. This line is necessary to handle input errors. It is
part of Java’s exception handling features, which are discussed in Chapter 10.

for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, itis a
powerful and versatile construct.

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the newer “for-each” form.
Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for (initialization; condition; iteration) {
// body
}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the
loop is executed. Generally, this is an expression that sets the value of the loop control variable,
which acts as a counter that controls the loop. It is important to understand that the initialization
expression is executed only once. Next, condition is evaluated. This must be a Boolean expression.
It usually tests the loop control variable against a target value. If this expression is true, then the
body of the loop is executed. If it is false, the loop terminates. Next, the ileration portion of the
loop is executed. This is usually an expression that increments or decrements the loop control
variable. The loop then iterates, first evaluating the conditional expression, then executing the
body of the loop, and then executing the iteration expression with each pass. This process
repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
public static void main(String args[])

int n;

for (n=10; n>0; n--)

05-ch05.indd 93 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

94

05-ch05.indd 94

PART | The Java Language

System.out.println("tick " + n);

}
}

Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is needed only for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so
that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
public static void main(String argsl[]) {

// here, n is declared inside of the for loop
for (int n=10; n>0; n--)
System.out.println("tick " + n);

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to
use the loop control variable elsewhere in your program, you will not be able to declare it
inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed
elsewhere.

// Test for primes.
class FindPrime ({
public static void main(String argsl[]) {
int num;
boolean isPrime;

num = 14;
if (num < 2) isPrime = false;
else isPrime = true;

for(int i=2; i <= num/i; i++)
if ((num % i) == 0) {
isPrime = false;
break;

}
}

if (isPrime) System.out.println("Prime") ;
else System.out.println("Not Prime");

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 95

Using the Comma

There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop. For example, consider the loop in
the following program:

class Sample {
public static void main(String args[]) {

int a, b;

b = 4;

for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + Db);
b--;

}

}
}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include
multiple statements in both the initialization and iteration portions of the for. Each
statement is separated from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded, as shown here:

// Using the comma.
class Comma
public static void main(String args[]) {

int a, b;

for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);

}

}
}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

oo o w
I
(ST NI N

NOTE If you are familiar with C/C++, then you know that in those languages the comma is an operator
that can be used in any valid expression. However, this is not the case with Java. In Java, the comma
is a separator.

05-ch05.indd 95 14/02/14 4:46 PM

(c) ketadton.com: The Digital Library

96

05-ch05.indd 96

PART |

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

The Java Language

Some for Loop Variations

The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and
the iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically, this
expression does not need to test the loop control variable against some target value. In fact,
the condition controlling the for can be any Boolean expression. For example, consider the
following fragment:

boolean done = false;
for(int i=1; !done; i++) {
//
if (interrupted()) done = true;

}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar (
public static void main(String argsl[]) {
int 1i;
boolean done = false;

i =0;

for(; !done;) {
System.out.println("i is " + 1i);
if (i == 10) done = true;
14+;

}
}
}

Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty. While this is of no value in this simple example—indeed, it
would be considered quite poor style—there can be times when this type of approach
makes sense. For example, if the initial condition is set through a complex expression
elsewhere in the program or if the loop control variable changes in a nonsequential
manner determined by actions that occur within the body of the loop, it may be
appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) |
//
}

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 97

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop
like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop

Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it has become a standard feature that programmers have come to expect. A for-each
style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and
no preexisting code is broken. The for-each style of for is also referred to as the enhanced
for loop.

The general form of the for-each version of the for is shown here:

for (type itr-var: collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that can
be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections
Framework, are discussed later in this book.) With each iteration of the loop, the next
element in the collection is retrieved and stored in étr-var. The loop repeats until all
elements in the collection have been obtained.

Because the iteration variable receives values from the collection, #ype must be the same as
(or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
lype must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = O;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the
entire array is read in strictly sequential order. This is accomplished by manually indexing the
nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need to
establish a loop counter, specify a starting and ending value, and manually index the array.
Instead, it automatically cycles through the entire array, obtaining one element at a time, in

05-ch05.indd 97 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

98

05-ch05.indd 98

PART| The Java Language

sequence, from beginning to end. For example, here is the preceding fragment rewritten
using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for (int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so
on. Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
public static void main(String argsl[]) {
int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

// use for-each style for to display and sum the values
for(int x : nums)

System.out.println("Value is: " + x);

sum += X;

}

System.out.println ("Summation: " + sum) ;

The output from the program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 10
Summation: 55

H WO oo Jo0 U WwNhR

As this output shows, the for-each style for automatically cycles through an array in
sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 ({
public static void main(String args[]) {
int sum = 0;

14/02/14 4:46 PM

(c) ketadton.com: The Digital Library

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 99

int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// use for to display and sum the values
for (int x : nums)

System.out .println("Value is: " + x);
sum += X;
if (x == 5) break; // stop the loop when 5 is obtained
1
System.out.println("Summation of first 5 elements: " + sum);

This is the output produced:

Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5

Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break
statement can also be used with Java’s other loops, and it is discussed in detail later in this
chapter.

There is one important point to understand about the for-each style loop. Its iteration

variable is “read-only” as it relates to the underlying array. An assignment to the iteration
variable has no effect on the underlying array. In other words, you can’t change the contents of
the array by assigning the iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange {

public static void main(String args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
for (int x: nums)

System.out.print(x + " ");
X = x * 10; // no effect on nums

}

System.out.println() ;

for (int x : nums)
System.out.print(x + " ");

System.out.println() ;

The first for loop increases the value of the iteration variable by a factor of 10. However,

this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

05-ch05.indd 99

123456 78910
12345678910

14/02/14 4:46 PM

(c) ketadton.com: The Digital Library

100

05-ch05.indd 100

PART| The Java Language

lterating Over Multidimensional Arrays

The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,
a two-dimensional array is an array of one-dimensional arrays.) This is important when

iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,

the iteration variable must be a reference to a one-dimensional array. In general, when

using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N-1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-

order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {

public static void main(String argsl[]) {
int sum = 0;
int nums (] [] = new int[3] [5];

// give nums some values

for(int 1 = 0; i < 3; 1i++)
for(int j = 0; j < 5; Jj++)
nums [1] [§] = (1+1)*(3+1);

// use for-each for to display and sum the values

for(int x[] : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;
}
}
System.out.println ("Summation: " + sum);

}
}

The output from this program is shown here:

Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:

W o WERE O DNU B WNR
o

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 101

Value is: 12
Value is: 15
Summation: 90

In the program, pay special attention to this line:
for (int x[]: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for

Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

// Search an array using for-each style for.
class Search
public static void main(String argsl[])
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// use for-each style for to search nums for val
for (int x : nums)

if (x == val) {
found = true;
break;
}
1
if (found)

System.out .println("Value found!");

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other types
of applications that benefit from for-each style loops include computing an average, finding
the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style for is
especially useful when operating on collections defined by the Collections Framework, which is
described in Part II. More generally, the for can cycle through the elements of any collection
of objects, as long as that collection satisfies a certain set of constraints, which are described in
Chapter 18.

05-ch05.indd 101 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

102 PARTI The Java Language

Nested Loops

Like all other programming languages, Java allows loops to be nested. That is, one loop
may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String argsl[]) {
int i, j;

for (i=0; i<10; i++) {
for(j=1i; j<10; Jj++)
System.out.print (".") ;
System.out .println() ;
}
}
}

The output produced by this program is shown here:

Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTE In addition to the jump statements discussed here, Java supports one other way that you can
change your program’s flow of execution: through exception handling. Exception handling provides
a structured method by which run-time errors can be trapped and handled by your program. It is
supported by the keywords try, catch, throw, throws, and finally. In essence, the exception handling
mechanism allows your program to perform a nonlocal branch. Since exception handling is a large
topic, it is discussed in its own chapter, Chapter 10.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used
as a “civilized” form of goto. The last two uses are explained here.

05-ch05.indd 102 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 103

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
public static void main(String argsl[])
for (int i=0; 1<100; i++) {
if (i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
}
System.out.println("Loop complete.");
}
}

This program generates the following output:

I =N ST Ay
LU WN RO

i: 9
Loop complete.
As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.
The break statement can be used with any of Java’s loops, including intentionally infinite

loops. For example, here is the preceding program coded by use of a while loop. The output
from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
public static void main(String args[])
int i = 0;

while(i < 100) {

if (i == 10) break; // terminate loop if i is 10
System.out.println("i: " + 1i);
i++4;

}

System.out.println("Loop complete.");

}
}

05-ch05.indd 103 14/02/14 4:46 PM

(c) ketadton.com: The Digital Library

104

05-ch05.indd 104

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

PART| The Java Language

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 ({
public static void main(String args[]) {
for(int i=0; i<3; i++) {
System.out.print ("Pass " + i1 + ": ");
for (int j=0; j<100; j++) {
if (j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}

System.out.println() ;

}

System.out .println("Loops complete.");

}
}

This program generates the following output:

Pass 0: 01 23 456 7829
Pass 1: 01 2 3 456 7829
Pass 2: 01 23456 7829

Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency to
destructure your code. Second, the break that terminates a switch statement affects only that
switch statement and not any enclosing loops.

REMEMBER break was not designed to provide the normal means by which a loop is terminated. The
loop’s conditional expression serves this purpose. The break statement should be used to cancel a
loop only when some sort of special situation occurs.

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured
manner. This usually makes goto-ridden code hard to understand and hard to maintain. It
also prohibits certain compiler optimizations. There are, however, a few places where the
goto is a valuable and legitimate construct for flow control. For example, the goto can be
useful when you are exiting from a deeply nested set of loops. To handle such situations,
Java defines an expanded form of the break statement. By using this form of break, you can,
for example, break out of one or more blocks of code. These blocks need not be part of a
loop or a switch. They can be any block. Further, you can specify precisely where execution
will resume, because this form of break works with a label. As you will see, break gives you
the benefits of a goto without its problems.

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 105

The general form of the labeled break statement is shown here:
break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-
alone block of code but it can also be a block that is the target of another statement. When
this form of break executes, control is transferred out of the named block. The labeled
block must enclose the break statement, but it does not need to be the immediately
enclosing block. This means, for example, that you can use a labeled break statement to
exit from a set of nested blocks. But you cannot use break to transfer control out of a block
that does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed by
a colon. Once you have labeled a block, you can then use this label as the target of a break
statement. Doing so causes execution to resume at the end of the labeled block. For example,
the following program shows three nested blocks, each with its own label. The break statement
causes execution to jump forward, past the end of the block labeled second, skipping the two
println() statements.

// Using break as a civilized form of goto.
class Break
public static void main(String args[]) {
boolean t = true;

first: {
second: {
third: {
System.out.println ("Before the break.");
if (t) break second; // break out of second block
System.out .println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}
}
}

Running this program generates the following output:

Before the break.
This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.
For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
public static void main(String args[]) {
outer: for(int i=0; i<3; i++) {

System.out.print ("Pass " + 1 + ": ");
for (int j=0; j<100; F++) {
if(j == 10) break outer; // exit both loops

05-ch05.indd 105 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

106

05-ch05.indd 106

PART| The Java Language

System.out.print(j + " ");

}

System.out.println("This will not print");

}

System.out .println ("Loops complete.");

}
}

This program generates the following output:
Pass 0: 01 2 3 45 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been
terminated. Notice that this example labels the for statement, which has a block of code as
its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
public static void main(String argsl[]) {

one: for(int i=0; i<3; i++)
System.out.print ("Pass " + 1 + ": ");

}

for(int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}
}

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control out of that block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop but stop processing the remainder of the code in its body for
this particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s
end. The continue statement performs such an action. In while and do-while loops, a
continue statement causes control to be transferred directly to the conditional expression
that controls the loop. In a for loop, control goes first to the iteration portion of the for
statement and then to the conditional expression. For all three loops, any intermediate
code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.

class Continue {
public static void main(String argsl[]) {

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 5 Control Statements 107

for (int 1=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("") ;
1
}
1

This code uses the % operator to check if i is even. If it is, the loop continues without
printing a newline. Here is the output from this program:

w O N O
0 g U W

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9:

// Using continue with a label.
class ContinueLabel
public static void main(String args[])
outer: for (int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
if(3 > 1) |
System.out.println() ;
continue outer;
}
System.out.print (" " + (i * j));
}
}
System.out.println() ;
}
}

The continue statement in this example terminates the loop counting j and continues with
the next iteration of the loop counting i. Here is the output of this program:

4

6 9

8 12 16

10 15 20 25

12 18 24 30 36

14 21 28 35 42 49

16 24 32 40 48 56 64

18 27 36 45 54 63 72 81

O O O O O O O o o o
W o JO0 Ul WN

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which
early iteration is needed, the continue statement provides a structured way to accomplish it.

05-ch05.indd 107 14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

108

05-ch05.indd 108

PART| The Java Language

return

The last control statement is return. The return statement is used to explicitly return from a
method. That is, it causes program control to transfer back to the caller of the method. As
such, it is categorized as a jump statement. Although a full discussion of return must wait
until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method, the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that calls
main():

// Demonstrate return.
class Return {
public static void main(String argsl[]) {
boolean t = true;

System.out.println("Before the return.");
if(t) return; // return to caller

System.out.println("This won't execute.");
}

The output from this program is shown here:

Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know that
the last println() statement would never be executed. To prevent this error, the if statement is
used here to trick the compiler for the sake of this demonstration.

14/02/14 4:46 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

CHAPTER

Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java language
is built because it defines the shape and nature of an object. As such, the class forms the
basis for object-oriented programming in Java. Any concept you wish to implement in a Java
program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be devoted
to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been shown. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new
data type. Once defined, this new type can be used to create objects of that type. Thus, a
class is a template for an object, and an object is an instance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will see, a
class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can (and usually
do) get much more complex. A simplified general form of a class definition is shown here:

class classname {
lype instance-variablel;

109

06-ch06.indd 109 14/02/14 4:47 PM

(c) ketadton.com: The Digital Library

110

06-ch06.indd 110

PART| The Java Language

type instance-variable2;

// .

type instance-variableN;

type methodnamel (parameter-list) {
// body of method

}

lype methodname2(parameter-list) {
// body of method

}

[/
lype methodnameN(parameter-list) {

// body of method
}
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and
accessed by the methods defined for that class. Thus, as a general rule, it is the methods
that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of
the class (that is, each object of the class) contains its own copy of these variables. Thus, the
data for one object is separate and unique from the data for another. We will come back to
this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general
form of a class does not specify a main() method. Java classes do not need to have a main()
method. You only specify one if that class is the starting point for your program. Further,
some kinds of Java applications, such as applets, don’t require a main() method at all.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {
double width;
double height;
double depth;

}

As stated, a class defines a new type of data. In this case, the new data type is called Box. You
will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 6 Introducing Classes 111

To actually create a Box object, you will use a statement like the following:
Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an
object that contains its own copy of each instance variable defined by the class. Thus, every
Box object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of
the object with the name of an instance variable. For example, to assign the width variable
of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the
instance variables and the methods within an object. One other point: Although commonly
referred to as the dot operator, the formal specification for Java categorizes the . as a separator.
However, since the use of the term “dot operator” is widespread, it is used in this book.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

Call this file BoxDemo.java
*/
class Box {
double width;
double height;
double depth;

}

// This class declares an object of type Box.
class BoxDemo {
public static void main(String args[]) {
Box mybox = new Box() ;
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}
}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this

06-ch06.indd 111 14/02/14 4:47 PM

(c) ketadton.com: The Digital Library

112

06-ch06.indd 112

PART| The Java Language

program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is not
necessary for both the Box and the BoxDemo class to actually be in the same source file.
You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means
that if you have two Box objects, each has its own copy of depth, width, and height. It is
important to understand that changes to the instance variables of one object have no
effect on the instance variables of another. For example, the following program declares
two Box objects:

// This program declares two Box objects.

class Box
double width;
double height;
double depth;

}

class BoxDemo2 {

public static void main(String args[]) {
Box myboxl = new Box () ;
Box mybox2 = new Box () ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl.height * myboxl.depth;
System.out.println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out .println("Volume is " + vol);

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 6 Introducing Classes 113

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new
operator. The new operator dynamically allocates (that is, allocates at run time) memory
for an object and returns a reference to it. This reference is, more or less, the address in
memory of the object allocated by new. This reference is then stored in the variable. Thus,
in Java, all class objects must be dynamically allocated. Let’s look at the details of this
procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box () ;

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox
does not yet refer to an actual object. The next line allocates an object and assigns a
reference to it to mybox. After the second line executes, you can use mybox as if it were a
Box object. But in reality, mybox simply holds, in essence, the memory address of the actual
Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname ();

06-ch06.indd 113 14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

114

06-ch06.indd 114

PART| The Java Language

Statement Effect
Box mybox;
mybox
mybox = new Box(); —+—— | Width
mybox Height
Depth
Box object

Figure 6-1 Declaring an object of type Box

Here, class-varis a variable of the class type being created. The classnameis the name of

the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class is
created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their

class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to
treat them differently than it treats the primitive types. By not applying the same overhead
to the primitive types that applies to objects, Java can implement the primitive types more
efficiently. Later, you will see object versions of the primitive types that are available for your
use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory
exists. If this happens, a run-time exception will occur. (You will learn how to handle
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class,
you are creating an instance of that class. Thus, a class is a logical construct. An object has
physical reality. (That is, an object occupies space in memory.) It is important to keep this
distinction clearly in mind.

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 6 Introducing Classes 115

Assigning Object Reference Variables

Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box bl
Box b2

new Box () ;
bl;

You might think that b2 is being assigned a reference to a copy of the object referred to by
bl. That is, you might think that bl and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, bl and b2 will both refer to the
same object. The assignment of bl to b2 did not allocate any memory or copy any part of
the original object. It simply makes b2 refer to the same object as does b1. Thus, any
changes made to the object through b2 will affect the object to which bl is referring, since
they are the same object.

This situation is depicted here:

/ Height Box object
Depth

—

b2

Although bl and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box bl = new Box() ;
Box b2 = bl;

bl = null;

Here, bl has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable, you are
not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods

As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However,
there are some fundamentals that you need to learn now so that you can begin to add
methods to your classes.

06-ch06.indd 115 14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

116

06-ch06.indd 116

PART| The Java Language

This is the general form of a method:

type name(parameter-list) {
// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially
variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value,

Here, valueis the value returned.
In the next few sections, you will see how to create various types of methods, including
those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In
fact, methods define the interface to most classes. This allows the class implementor to
hide the specific layout of internal data structures behind cleaner method abstractions. In
addition to defining methods that provide access to data, you can also define methods that
are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while
looking at the preceding programs that the computation of a box’s volume was something
that was best handled by the Box class rather than the BoxDemo class. After all, since the
volume of a box is dependent upon the size of the box, it makes sense to have the Box class
compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
double width;
double height;
double depth;

// display volume of a box
void volume () ({
System.out.print ("Volume is ") ;
System.out .println(width * height * depth) ;
}
}

class BoxDemo3 {
public static void main(String args[]) {

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

06-ch06.indd 117

Chapter 6 Introducing Classes 117

Box myboxl = new Box () ;
Box mybox2 = new Box () ;

// assign values to myboxl's instance variables
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box
myboxl.volume () ;

// display volume of second box
mybox2 .volume () ;

}
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume () ;
mybox2.volume () ;

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined
by its class, it does so directly, without explicit reference to an object and without use of the
dot operator. This is easy to understand if you think about it. A method is always invoked
relative to some object of its class. Once this invocation has occurred, the object is known.
Thus, within a method, there is no need to specify the object a second time. This means
that width, height, and depth inside volume() implicitly refer to the copies of those
variables found in the object that invokes volume().

14/02/14 4:47 PM

(c) ketadton.com: The Digital Library

118

06-ch06.indd 118

PART| The Java Language

Let’s review: When an instance variable is accessed by code that is not part of the class

in which that instance variable is defined, it must be done through an object, by use of the

dot operator. However, when an instance variable is accessed by code that is part of the

same class as the instance variable, that variable can be referred to directly. The same thing

applies to methods.

Returning a Value

While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what if
another part of your program wanted to know the volume of a box, but not display its
value? A better way to implement volume() is to have it compute the volume of the box
and return the result to the caller. The following example, an improved version of the
preceding program, does just that:

// Now, volume () returns the volume of a box.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {
return width * height * depth;
1
}

class BoxDemo4 {
public static void main(String argsl[]) {
Box myboxl = new Box() ;
Box mybox2 = new Box () ;
double vol;

// assign values to myboxl's instance variables
myboxl.width = 10;

myboxl.height = 20;

myboxl.depth = 15;

/* assign different values to mybox2's
instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = myboxl.volume () ;
System.out .println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

06-ch06.indd 119

Chapter 6 Introducing Classes 119

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = myboxl.volume () ;

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

¢ The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

¢ The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is" + myboxl.volume()) ;

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters

While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be
used in a number of slightly different situations. To illustrate this point, let’s use a very
simple example. Here is a method that returns the square of the number 10:

int square ()

{

return 10 * 10;

}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square(int 1)

{

return 1 * i;

}

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather
than just 10.

Here is an example:

int x, y;
X = square(5); // x equals 25
x = square(9); // x equals 81

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

120

06-ch06.indd 120

PART| The Java Language

y = 2;
b'q square (y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameteris a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the
parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence of
statements, such as:

myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed Java
programs, instance variables should be accessed only through methods defined by their
class. In the future, you can change the behavior of a method, but you can’t change the
behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that
takes the dimensions of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
double width;
double height;
double depth;

// compute and return volume
double volume () {
return width * height * depth;

}

// sets dimensions of box
void setDim(double w, double h, double d) {

width = w;
height = h;
depth = d;

}
}

class BoxDemo5 {

14/02/14 4:47 PM

(c) ketatlton.com: The Digital Library CompRef 2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 6 Introducing Classes 121

public static void main(String args[])
Box myboxl = new Box() ;
Box mybox2 = new Box() ;
double vol;

// initialize each box
myboxl.setDim (10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = myboxl.volume () ;
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume () ;
System.out.println("Volume is " + vol);

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1l.setDim (10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as m